
Distributed Computing
Toolbox

For Use with MATLAB®

Computation

Visualization

Programming

User’s Guide
Version 3

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Distributed Computing Toolbox User’s Guide

© COPYRIGHT 2004–2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
November 2004 Online only New for Version 1.0 (Release 14SP1+)
March 2005 Online only Revised for Version 1.0.1 (Release 14SP2)
September 2005 Online only Revised for Version 1.0.2 (Release 14SP3)
November 2005 Online only Revised for Version 2.0 (Release 14SP3+)
March 2006 Online only Revised for Version 2.0.1 (Release 2006a)
September 2006 Online only Revised for Version 3.0 (Release 2006b)

Contents

Getting Started

1
What Are the Distributed Computing Products? 1-2

Determining Product Installation and Versions 1-3

Toolbox and Engine Components . 1-4
Job Managers, Workers, and Clients 1-4
Third-Party Schedulers . 1-5
Components on Mixed Platforms or Heterogeneous

Clusters . 1-7
MATLAB Distributed Computing Engine Service 1-7
Components Represented in the Client 1-7

Using the Distributed Computing Toolbox 1-8
Overview . 1-8
Example: Programming a Basic Job with a Job Manager . . 1-9
Example: Evaluating a Basic Function 1-10
Example: Programming a Basic Job with an LSF

Scheduler . 1-10

Getting Help . 1-12
Command-Line Help . 1-12
Help Browser . 1-13

Programming Overview

2
Program Development Guidelines 2-2

Life Cycle of a Job . 2-3

Programming with User Configurations 2-5

v

Defining Configurations . 2-5
Applying Configurations in Client Code 2-6

Programming Tips and Notes . 2-9
Saving or Sending Objects . 2-9
Current Working Directory of a MATLAB Worker 2-9
Using clear functions . 2-10
Running Tasks That Call Simulink 2-10
Using the pause Function . 2-10
Transmitting Large Amounts of Data 2-10
Interrupting a Job . 2-10
IPv6 on Macintosh . 2-11
Speeding Up a Job . 2-11

Troubleshooting and Debugging . 2-12
Object Data Size Limitations . 2-12
File Access and Permissions . 2-14
No Results or Failed Job . 2-16
Connection Problems Between the Client and Job

Manager . 2-17

Evaluating Functions in a Cluster

3
Evaluating Functions Synchronously 3-2

Scope of dfeval . 3-2
Arguments of dfeval . 3-3
Example — Using dfeval . 3-4

Evaluating Functions Asynchronously 3-8

Programming Distributed Jobs

4
Using a Job Manager . 4-2

Creating and Running Jobs with a Job Manager 4-2

vi Contents

Sharing Code . 4-6
Managing Objects in the Job Manager 4-9

Using a Fully Supported Third-Party Scheduler 4-13
Creating and Running Jobs with Your Scheduler 4-13
Sharing Code . 4-19
Managing Objects . 4-22

Using the Generic Scheduler Interface 4-24
Overview . 4-24
MATLAB Client Submit Function . 4-25
Example — Writing the Submit Function 4-29
MATLAB Worker Decode Function 4-30
Example — Writing the Decode Function 4-32
Example — Programming and Running a Job in the

Client . 4-33
Supplied Submit and Decode Functions 4-37
Summary . 4-38

Interactive Parallel Mode

5
Introduction . 5-2

Getting Started with Interactive Parallel Mode 5-3

Plotting in pmode . 5-6

Limitations and Unexpected Results 5-8
Evaluating Selection of Code . 5-8
Distributing Nonreplicated Arrays 5-8
Using Graphics in pmode . 5-10

Troubleshooting . 5-11
Hostname Resolution . 5-11
Socket Connections . 5-11

vii

Programming Parallel Jobs

6
Introduction . 6-2

Using a Supported Scheduler . 6-4
Coding the Task Function . 6-4
Coding in the Client . 6-5

Using the Generic Scheduler Interface 6-7
Introduction . 6-7
Coding in the Client . 6-7

Further Notes on Parallel Jobs . 6-9
Number of Tasks in a Parallel Job . 6-9
Avoiding Deadlock and Other Dependency Errors 6-10

Parallel Math

7
Array Types . 7-2

Nondistributed Arrays . 7-2
Distributed Arrays . 7-4

Working with Distributed Arrays 7-5
How MATLAB Distributes Arrays . 7-5
Creating a Distributed Array . 7-7
Local Arrays . 7-10
Obtaining Information About the Array 7-11
Changing the Dimension of Distribution 7-13
Restoring the Full Array . 7-13
Indexing into a Distributed Array . 7-15

Using a Parallel for-Loop (parfor) 7-17
Distributed Arrays in a parfor Loop 7-18

Using MATLAB Functions on Distributed Arrays 7-20

viii Contents

Functions — By Category

8
General Toolbox Functions . 8-2

Job Manager Functions . 8-3

Scheduler Functions . 8-3

Job Functions . 8-4

Task Functions . 8-4

Toolbox Functions Used in Parallel Jobs and pmode . . 8-4

Toolbox Functions Used in MATLAB Workers 8-7

Functions — Alphabetical List

9

Properties — By Category

10
Job Manager Properties . 10-2

Scheduler Properties . 10-2

Job Properties . 10-4

Task Properties . 10-5

Worker Properties . 10-6

ix

Properties — Alphabetical List

11

Glossary

Index

x Contents

1

Getting Started

This chapter provides information you need to get started with the Distributed
Computing Toolbox and the MATLAB® Distributed Computing Engine. The
sections are as follows.

What Are the Distributed Computing
Products? (p. 1-2)

Overview of the Distributed
Computing Toolbox and the
MATLAB Distributed Computing
Engine, and their capabilities

Toolbox and Engine Components
(p. 1-4)

Descriptions of the parts and
configurations of a distributed
computing setup

Using the Distributed Computing
Toolbox (p. 1-8)

Introduction to Distributed
Computing Toolbox programming
with a basic example

Getting Help (p. 1-12) Explanation of how to get help on
toolbox functions

1 Getting Started

What Are the Distributed Computing Products?
The Distributed Computing Toolbox and the MATLAB Distributed Computing
Engine enable you to coordinate and execute independent MATLAB
operations simultaneously on a cluster of computers, speeding up execution of
large MATLAB jobs.

A job is some large operation that you need to perform in your MATLAB
session. A job is broken down into segments called tasks. You decide how best
to divide your job into tasks. You could divide your job into identical tasks,
but tasks do not have to be identical.

The MATLAB session in which the job and its tasks are defined is called the
client session. Often, this is on the machine where you program MATLAB.
The client uses the Distributed Computing Toolbox to perform the definition
of jobs and tasks. The MATLAB Distributed Computing Engine is the product
that performs the execution of your job by evaluating each of its tasks and
returning the result to your client session.

The job manager is the part of the engine that coordinates the execution of
jobs and the evaluation of their tasks. The job manager distributes the tasks
for evaluation to the engine’s individual MATLAB sessions called workers.
Use of the MathWorks job manager is optional; the distribution of tasks to
workers can also be performed by a third-party scheduler, such as Windows
CCS or Platform LSF.

See the “Glossary” on page Glossary-1 for definitions of the distributed
computing terms used in this manual.

1-2

What Are the Distributed Computing Products?

��������	
��

�������

	

�	��������

�������������
���������	

��
������

�������

����������������	

��
������������	

��������	
��

����������������	

��
������������	

��������	
��

����������������	

��
������������	

Basic Distributed Computing Configuration

Determining Product Installation and Versions
To determine if the Distributed Computing Toolbox is installed on your
system, type this command at the MATLAB prompt.

ver

When you enter this command, MATLAB displays information about the
version of MATLAB you are running, including a list of all toolboxes installed
on your system and their version numbers.

You can run the ver command as part of a task in a distributed application
to determine what version of the MATLAB Distributed Computing Engine
is installed on a worker machine. Note that the toolbox and engine must
be the same version.

1-3

1 Getting Started

Toolbox and Engine Components

Job Managers, Workers, and Clients
The job manager can be run on any machine on the network. The job manager
runs jobs in the order in which they are submitted, unless any jobs in its
queue are promoted, demoted, canceled, or destroyed.

Each worker is given a task from the running job by the job manager, executes
the task, returns the result to the job manager, and then is given another
task. When all tasks for a running job have been assigned to workers, the job
manager starts running the next job with the next available worker.

A MATLAB Distributed Computing Engine setup usually includes many
workers that can all execute tasks simultaneously, speeding up execution of
large MATLAB jobs. It is generally not important which worker executes a
specific task. The workers evaluate tasks one at a time, returning the results
to the job manager. The job manager then returns the results of all the tasks
in the job to the client session.

Note For testing your application locally or other purposes, you can configure
a single computer as client, worker, and job manager. You can also have more
than one worker session or more than one job manager session on a machine.

�	
��

�������

	

�	��������

������

�	
��

�	
��

������

�	�

�����������

�	�

�����������

����

�������

����

�������

����

�������

Interactions of Distributed Computing Sessions

1-4

Toolbox and Engine Components

A large network might include several job managers as well as several
client sessions. Any client session can create, run, and access jobs on any
job manager, but a worker session is registered with and dedicated to only
one job manager at a time. The following figure shows a configuration with
multiple job managers.

������

�	
��

�	
��

�	
��

������

�������

	

�	��������

�	
��

�	
��

�	
��

������

������

�������

	

�	��������

Configuration with Multiple Clients and Job Managers

Third-Party Schedulers
As an alternative to using the MathWorks job manager, you can use a
third-party scheduler. This could be Windows CCS, Platform Computing
LSF, mpiexec, or a generic scheduler.

Choosing Between a Scheduler and Job Manager
You should consider the following when deciding to use a scheduler or the
MathWorks job manager for distributing your tasks:

• Does your cluster already have a scheduler?

If you already have a scheduler, you may be required to use it as a means
of controlling access to the cluster. Your existing scheduler might be just
as easy to use as a job manager, so there might be no need for the extra
administration involved.

1-5

1 Getting Started

• Is the handling of distributed computing jobs the only cluster scheduling
management you need?

The MathWorks job manager is designed specifically for MathWorks
distributed computing applications. If other scheduling tasks are not
needed, a third-party scheduler might not offer any advantages.

• Is there a file sharing configuration on your cluster already?

The MathWorks job manager can handle all file and data sharing necessary
for your distributed computing applications. This might be helpful in
configurations where shared access is limited.

• Are you interested in batch mode or managed interactive processing?

When you use a job manager, worker processes usually remain running at
all times, dedicated to their job manager. With a third-party scheduler,
workers are run as applications that are started for the evaluation of tasks,
and stopped when their tasks are complete. If tasks are small or take little
time, starting a worker for each one might involve too much overhead time.

• Are there security concerns?

Your own scheduler may be configured to accommodate your particular
security requirements.

• How many nodes are on your cluster?

If you have a large cluster, you probably already have a scheduler. Consult
your MathWorks representative if you have questions about cluster size
and the job manager.

• Who administers your cluster?

The person administering your cluster might have a preference for how
jobs are scheduled.

• Do you need to monitor your job’s progress or access intermediate data?

A job run by the job manager supports events and callbacks, so that
particular functions can run as each job and task progresses from one state
to another.

1-6

Toolbox and Engine Components

Components on Mixed Platforms or Heterogeneous
Clusters
The Distributed Computing Toolbox and MATLAB Distributed Computing
Engine are supported on Windows, UNIX, and Macintosh platforms. Mixed
platforms are supported, so that the clients, job managers, and workers do
not have to be on the same platform. The cluster can also be comprised of
both 32-bit and 64-bit machines, so long as your data does not exceed the
limitations posed by the 32-bit systems.

In a mixed-platform environment, system administrators should be sure to
follow the proper installation instructions for the local machine on which you
are installing the software.

MATLAB Distributed Computing Engine Service
If you are using the MathWorks job manager, every machine that hosts a
worker or job manager session must also run the MATLAB Distributed
Computing Engine (mdce) service.

The mdce service controls the worker and job manager sessions and recovers
them when their host machines crash. If a worker or job manager machine
crashes, when the mdce service starts up again (usually configured to start
at machine boot time), it automatically restarts the job manager and worker
sessions to resume their sessions from before the system crash. These
processes are covered more fully in the MATLAB Distributed Computing
Engine System Administrator’s Guide.

Components Represented in the Client
A client session communicates with the job manager by calling methods and
configuring properties of a job manager object. Though not often necessary,
the client session can also access information about a worker session through
a worker object.

When you create a job in the client session, the job actually exists in the job
manager or in the scheduler’s data location. The client session has access to
the job through a job object. Likewise, tasks that you define for a job in the
client session exist in the job manager or in the scheduler’s data location, and
you access them through task objects.

1-7

1 Getting Started

Using the Distributed Computing Toolbox

Overview
A typical Distributed Computing Toolbox client session includes the following
steps. Details of each step appear in “Creating and Running Jobs with a Job
Manager” on page 4-2. For a basic example, see “Example: Programming a
Basic Job with a Job Manager” on page 1-9.

1 “Find a Job Manager” on page 4-2 (or scheduler) — Your network may have
one or more job managers available (but usually only one scheduler). The
function you use to find a job manager or scheduler creates an object in
your current MATLAB session to represent the job manager or scheduler
that will run your job.

2 “Create a Job” on page 4-3 — You create a job to hold a collection of tasks.
The job exists on the job manager (or scheduler’s data location), but a job
object in the local MATLAB session represents that job.

3 “Create Tasks” on page 4-5 — You create tasks to add to the job. Each task
of a job can be represented by a task object in your local MATLAB session.

4 “Submit a Job to the Job Queue” on page 4-5 for Execution — When your
job has all its tasks defined, you submit it to the queue in the job manager
or scheduler. The job manager or scheduler distributes your job’s tasks to
the worker sessions for evaluation. When all of the workers are completed
with the job’s tasks, the job moves to the finished state.

5 “Retrieve the Job’s Results” on page 4-6 — The resulting data from the
evaluation of the job is available as a property value of each task object.

6 Destroy the Job — When a job is complete and you have its results, you
might want to permanently remove the job from the job manager. Once a
job is destroyed, its data is gone forever.

Note Before starting any of the following examples, coordinate with your
system administrator to find out what kind of scheduler you have, its name (if
applicable), and how many workers are available to you on your cluster.

1-8

Using the Distributed Computing Toolbox

Example: Programming a Basic Job with a Job
Manager
This example illustrates the basic steps in creating and running a job that
contains a few simple tasks. Each task performs a sum on an input array.

1 Find a job manager. Use findResource to locate a job manager and create
the job manager object jm, which represents the job manager in the cluster
whose name is MyJobManager running on the host JobMgrHost.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

2 Create a job. Create job j on the job manager.

j = createJob(jm);

3 Create tasks. Create three tasks on the job j. Each task evaluates the sum
of the array that is passed as an input argument.

createTask(j, @sum, 1, {[1 1]});
createTask(j, @sum, 1, {[2 2]});
createTask(j, @sum, 1, {[3 3]});

4 Submit the job to the queue. The job manager moves the job into the queue
to be executed when workers are available.

submit(j);

5 Retrieve results. Wait for the job to complete, then get the results from all
the job’s tasks.

waitForState(j)
results = getAllOutputArguments(j)
results =

[2]
[4]
[6]

1-9

1 Getting Started

6 Destroy the job. When you have the results, you can permanently remove
the job from the job manager.

destroy(j)

Example: Evaluating a Basic Function
The dfeval function allows you to evaluate a function in a cluster of workers
without having to define jobs and tasks yourself. When you can divide your
job into similar tasks, using dfeval might be an appropriate way to run your
job. The following code by default uses a MathWorks job manager for dfeval.

results = dfeval(@sum, {[1 1] [2 2] [3 3]})
results =

[2]
[4]
[6]

This example runs the job as three tasks in the same way the previous
example does.

For more information about dfeval and in what circumstances you can use it,
see Chapter 3, “Evaluating Functions in a Cluster”.

Example: Programming a Basic Job with an LSF
Scheduler
This example illustrates the basic steps in creating and running a job by
using a third-party scheduler instead of a MathWorks job manager. Each
task performs a sum on an input array.

1 Find a scheduler. Use findResource to locate a scheduler and create the
scheduler object sched, which represents your cluster’s LSF scheduler.

sched = findResource('scheduler','type','LSF');

2 Create a job. Create job j on the scheduler.

j = createJob(sched);

1-10

Using the Distributed Computing Toolbox

3 Create tasks. Create three tasks on the job j. Each task evaluates the sum
of the array that is passed as an input argument.

createTask(j, @sum, 1, {[1 1]});
createTask(j, @sum, 1, {[2 2]});
createTask(j, @sum, 1, {[3 3]});

4 Submit the job to the queue. The scheduler moves the job into the queue to
be executed when nodes are available.

submit(j);

5 Retrieve results. Wait for the job to complete, then get the results from all
the job’s tasks.

waitForState(j)
results = getAllOutputArguments(j)
results =

[2]
[4]
[6]

6 Destroy the job. When you have the results, you can permanently remove
the job from the scheduler’s data location.

destroy(j)

1-11

1 Getting Started

Getting Help

Command-Line Help
You can get command-line help on the object functions in the Distributed
Computing Toolbox by using the syntax

help distcomp.objectType/functionName

For example, to get command-line help on the createTask function, type

help distcomp.job/createTask

The available choices for objectType are jobmanager, job, and task.

Listing Available Functions
To find the functions available for each type of object, type

methods(obj)

where obj is an object of one of the available types.

For example, to see the functions available for job manager objects, type

jm = findResource('scheduler','type','jobmanager');
methods(jm)

To see the functions available for job objects, type

job1 = createJob(jm)
methods(job1)

To see the functions available for task objects, type

task1 = createTask(job1,1,@rand,{3})
methods(task1)

1-12

Getting Help

Help Browser
You can open the Help browser with the doc command. To open the browser
on a specific reference page for a function or property, type

doc distcomp/RefName

where RefName is the name of the function or property whose reference page
you want to read.

For example, to open the Help browser on the reference page for the
createJob function, type

doc distcomp/createjob

To open the Help browser on the reference page for the UserData property,
type

doc distcomp/userdata

Note You must enter the property or function name with lowercase letters,
even though function names are case sensitive in other situations.

1-13

1 Getting Started

1-14

2

Programming Overview

This chapter provides information you need for programming with the
Distributed Computing Toolbox. The specifics of evaluating functions in a
cluster, programming distributed jobs, and programming parallel jobs are
covered in later chapters. This chapter describes features common to all the
programming options. The sections are as follows.

Program Development Guidelines
(p. 2-2)

Suggested method for program
development

Life Cycle of a Job (p. 2-3) Stages of a job from creation to
completion

Programming with User
Configurations (p. 2-5)

How to employ configurations for
parameters and properties in your
program

Programming Tips and Notes (p. 2-9) Provides helpful hints for good
programming practice

Troubleshooting and Debugging
(p. 2-12)

Describes common programming
errors and how to avoid them

2 Programming Overview

Program Development Guidelines
When writing code for the Distributed Computing Toolbox, you should
advance one step at a time in the complexity of your application. Verifying
your program at each step prevents your having to debug several potential
problems simultaneously. If you run into any problems at any step along the
way, back up to the previous step and reverify your code.

The recommended programming practice for distributed computing
applications is

1 Run code normally on your local machine. First verify your functions
so that as you progress, you are not trying to debug the functions and the
distribution at the same time. Run your functions in a single instance of
MATLAB on your local computer.

2 Run code distributed to only one node, where that node is likely the
local computer running a MATLAB worker in addition to your MATLAB
client. Create a job and task to verify that the function is working in a
distributed computing model.

3 Distribute the code to two nodes. Expand your job to include two tasks,
preferably executed on two different workers on different computers.

4 Distribute the code to N nodes. Scale up your job to include as many
tasks as you need.

Note The client session of MATLAB must be running the Java Virtual
Machine (JVM) to use the Distributed Computing Toolbox. Do not start
MATLAB with the -nojvm flag.

2-2

Life Cycle of a Job

Life Cycle of a Job
When you create and run a job, it progresses through a number of stages.
Each stage of a job is reflected in the value of the job object’s State property,
which can be pending, queued, running, or finished. Each of these stages
is briefly described in this section.

The figure below illustrated the stages in the life cycle of a job. In the
job manager, the jobs are shown categorized by their state. Some of
the functions you use for managing a job are createJob, submit, and
getAllOutputArguments.

��������	

����

��	��	

��	��	

��	��	

���
���

���
���

���
���
���

���

���

���

���
���
���

���

��������	

�	�
�

�������

�	�	��
	�����

�����
��

��������������������

��	��	

��	��	

Stages of a Job

The following table describes each stage in the life cycle of a job.

Job Stage Description

Pending You create a job on the scheduler with the createJob
function in your client session of the Distributed
Computing Toolbox. The job’s first state is pending.
This is when you define the job by adding tasks to it.

2-3

2 Programming Overview

Job Stage Description

Queued When you execute the submit function on a job, the
scheduler places the job in the queue, and the job’s
state is queued. The scheduler executes jobs in the
queue in the sequence in which they are submitted, all
jobs moving up the queue as the jobs before them are
finished. You can change the order of the jobs in the
queue with the promote and demote functions.

Running When a job reaches the top of the queue, the scheduler
distributes the job’s tasks to worker sessions for
evaluation. The job’s state is running. If more workers
are available than necessary for a job’s tasks, the
scheduler begins executing the next job. In this way,
there can be more than one job running at a time.

Finished When all of a job’s tasks have been evaluated, a job is
moved to the finished state. At this time, you can
retrieve the results from all the tasks in the job with the
function getAllOutputArguments.

Failed When using a third-party scheduler, a job might fail if
the scheduler encounters an error when attempting to
execute its commands or access necessary files.

Note that when a job is finished, it remains in the job manager or
DataLocation directory, even if you clear all the objects from the client
session. The job manager or scheduler keeps all the jobs it has executed, until
you restart the job manager in a clean state. Therefore, you can retrieve
information from a job at a later time or in another client session, so long as
the job manager has not been restarted with the -clean option.

To permanently remove completed jobs from the job manager or scheduler’s
data location, use the destroy function.

2-4

Programming with User Configurations

Programming with User Configurations
Configurations allow you to define certain parameters and properties in an
M-file, then have that file provide your settings when creating objects in the
MATLAB client. The functions that support the use of configurations are

• createJob

• createParallelJob

• createTask

• dfeval

• dfevalasync

• findResource

• set

The following sections describe how to define and apply user configurations:

• “Defining Configurations” on page 2-5

• “Applying Configurations in Client Code” on page 2-6

Defining Configurations
The Distributed Computing Toolbox includes a file called
matlabroot/toolbox/distcomp/user/distcompUserConfig.m. To use
configurations, you should copy this file to a directory that is higher on your
MATLAB path than matlabroot/toolbox/distcomp/user, and edit your copy
so that it accurately reflects your scheduler and how you want to run your jobs.

The file contains configurations for each type of scheduler supported by the
toolbox. Each configuration takes the name of the subfunction in which it
is defined. For each configuration, there are listed several parameters or
properties that you can set, arranged by object type. You can also add your
own configuration to the file by following the instructions included in the file.

2-5

2 Programming Overview

Example — Setting Properties in the User Configuration File
Suppose you want to set several properties for a job being run by a job
manager. In the distcompUserConfig.m file, you edit the configuration called
jobmanager.

Find the section of the file identified by the line

function conf = jobmanager()

In that section is a block of code that reads

% Job properties
conf.job.PathDependencies = {};
conf.job.FileDependencies = {};
% The following job properties are specific to the job manager
conf.job.RestartWorker = false;
conf.job.MaximumNumberOfWorkers = inf;
conf.job.MinimumNumberOfWorkers = 1;
conf.job.Timeout = inf;

To set the maximum and minimum number of workers and the timeout for a
job, edit the last three line in this section. For example,

conf.job.MaximumNumberOfWorkers = 4;
conf.job.MinimumNumberOfWorkers = 4;
conf.job.Timeout = 180;

When this configuration is applied to a job object, the job will run only on 4
workers, and have a timeout of 3 minutes.

Applying Configurations in Client Code
In the MATLAB client where you create and define your distributed
computing objects, you can use configurations when creating the objects, or
you can apply configurations to objects that already exist.

2-6

Programming with User Configurations

Finding Schedulers
When calling the findResource function, you can use configurations to
identify a particular scheduler. For example,

jm = findResource('scheduler','configuration','jobmanager')

This command finds the scheduler defined by the settings of the jobmanager
configuration in the distcompUserConfig.m file. The advantage of
configurations is that you can alter your scheduler choices without changing
your MATLAB application code. To accommodate different schedulers, the file
includes configurations called jobmanager, ccs, lsf, mpiexec, and generic.
You can also add your own configurations to the file.

For third-party schedulers, settable object properties can be defined in the
configuration and applied after findResource has created the scheduler
object. For example,

lsfsched = findResource('scheduler', 'type', 'lsf');
set (lsfsched, 'configuration', 'lsf');

Properties applied to the lsfsched object are defined in the section of the
configuration file that begins with the lines

function conf = lsf()
%LSF Return a sample configuration for an LSF cluster.

Setting Job and Task Properties
You can set the properties of a job or task with configurations when you create
the objects, or you can apply a configuration after you create the object. The
following code creates and configures two jobs with the same property values.

job1 = createJob(jm, 'Configuration', 'jobmanager')
job2 = createJob(jm)
set(job2, 'Configuration', 'jobmanager')

Notice that the Configuration property of a job indicates the configuration
that was applied to the job.

get(job1, 'Configuration')
jobmanager

2-7

2 Programming Overview

When you apply a configuration to an object, all the properties defined in
that configuration section of the distcompUserConfig.m file get applied to
the object, and the object’s Configuration property is set to reflect the name
of the configuration that you applied. If you later change any of the job’s
properties, the job’s configuration property is cleared.

Writing Scheduler-Independent Jobs
Because the properties of scheduler, job, and task objects can be defined
in a configuration file, you do not have to define them in your application.
Therefore, the code itself can accommodate any type of scheduler. For example,

sched = findResource('scheduler', 'configuration', 'MyConfig');
set(sched, 'Configuration', 'MyConfig');
job1 = createJob(sched, 'Configuration', 'MyConfig');
createTask(..., 'Configuration', 'MyConfig');

In the configuration file, the configuration defined as MyConfig must define
any and all properties necessary and appropriate for your scheduler and
configuration, and the configuration must not include any parameters
inconsistent with your setup. All changes necessary to use a different
scheduler or different kind of scheduler can now be made in the configuration,
without any modification needed in the application.

2-8

Programming Tips and Notes

Programming Tips and Notes
This section provides programming tips that might enhance your program
performance.

• “Saving or Sending Objects” on page 2-9

• “Current Working Directory of a MATLAB Worker” on page 2-9

• “Using clear functions” on page 2-10

• “Running Tasks That Call Simulink” on page 2-10

• “Using the pause Function” on page 2-10

• “Transmitting Large Amounts of Data” on page 2-10

• “Interrupting a Job” on page 2-10

• “IPv6 on Macintosh” on page 2-11

• “Speeding Up a Job” on page 2-11

Saving or Sending Objects
Do not use the save or load functions on Distributed Computing Toolbox
objects. Some of the information that these objects require is stored in the
MATLAB session persistent memory and would not be saved to a file.

Similarly, you cannot send a distributed computing object between distributed
computing processes by means of an object’s properties. For example, you
cannot pass a job manager, job, task, or worker object to MATLAB workers
as part of a job’s JobData property.

Current Working Directory of a MATLAB Worker
The current directory of a MATLAB worker at the beginning of its session is

CHECKPOINTBASE\HOSTNAME_WORKERNAME_mlworker_log\work

where CHECKPOINTBASE is defined in the mdce_def file, HOSTNAME is the name
of the node on which the worker is running, and WORKERNAME is the name of
the MATLAB worker session.

2-9

2 Programming Overview

For example, if the worker named worker22 is running on host nodeA52, and
its CHECKPOINTBASE value is C:\TEMP\MDCE\Checkpoint, the starting current
directory for that worker session is

C:\TEMP\MDCE\Checkpoint\nodeA52_worker22_mlworker_log\work

Using clear functions
Executing

clear functions

clears all Distributed Computing Toolbox objects from the current MATLAB
session. They still remain in the job manager. For information on recreating
these objects in the client session, see “Recovering Objects” on page 4-10.

Running Tasks That Call Simulink
The first task that runs on a worker session that uses Simulink® can take a
long time to run, as Simulink is not automatically started at the beginning of
the worker session. Instead, Simulink starts up when first called. Subsequent
tasks on that worker session will run faster, unless the worker is restarted
between tasks.

Using the pause Function
On worker sessions running on Macintosh or UNIX machines, pause(inf)
returns immediately, rather than pausing. This is to prevent a worker session
from hanging when an interrupt is not possible.

Transmitting Large Amounts of Data
Operations that involve transmitting many objects or large amounts of data
over the network can take a long time. For example, getting a job’s Tasks
property or the results from all of a job’s tasks can take a long time if the job
contains many tasks.

Interrupting a Job
Because jobs and tasks are run outside the client session, you cannot use
Ctrl+C (^C) in the client session to interrupt them. To control or interrupt

2-10

Programming Tips and Notes

the execution of jobs and tasks, use such functions as cancel, destroy,
demote, promote, pause, and resume.

IPv6 on Macintosh
To allow multicast access between different distributed computing processes
run by different users on the same Macintosh computer, IPv6 addressing
is disabled for MATLAB with the Distributed Computing Toolbox on a
Macintosh.

Note Though DCT/MDCE Version 3 continues to support multicast
communications between its processes, multicast is not recommended and
might not be supported in future releases.

Speeding Up a Job
You might find that your code runs slower on multiple workers than it does
on one desktop computer. This can occur when task startup and stop time is
not negligible relative to the task run time. The most common mistake in
this regard is to make the tasks too small, i.e., too fine-grained. Another
common mistake is to send large amounts of input or output data with each
task. In both of these cases, the time it takes to transfer data and initialize
a task is far greater than the actual time it takes for the worker to evaluate
the task function.

2-11

2 Programming Overview

Troubleshooting and Debugging
This section provides helpful suggestions for how to diagnose and work
around difficulties in programming distributed computing applications.

• “Object Data Size Limitations” on page 2-12

• “File Access and Permissions” on page 2-14

• “No Results or Failed Job” on page 2-16

• “Connection Problems Between the Client and Job Manager” on page 2-17

Object Data Size Limitations
By default, the size limit of data transfers among the distributed computing
objects is approximately 50 MB, determined by the Java Virtual Machine
(JVM) memory allocation limit. You can increase the amount of JVM memory
available to the distributed computing processes (clients, job manager, and
workers).

MATLAB Clients and Workers
You can find the current maximum JVM memory limit by typing the command

java.lang.Runtime.getRuntime.maxMemory
ans =

98172928

MATLAB clients and MATLAB workers allow up to approximately half of the
JVM memory limit for large data transfers. In the default case, half of the
approximately 100-MB limit is about 50 MB.

To increase the limit, create a file named java.opts that includes the -Xmx
option, specifying the amount of memory you want to give the JVM.

For example, to increase the JVM memory allocation limit to 200 MB, use the
following syntax in the java.opts file:

-Xmx200m

This increased limit allows approximately 100 MB of data to be transferred
with distributed computing objects.

2-12

Troubleshooting and Debugging

Note To avoid virtual memory thrashing, never set the -Xmx option to more
than 66% of the physical RAM available.

For MATLAB clients on UNIX or Macintosh systems, place the java.opts
file in a directory where you intend to start MATLAB, and move to that
directory before starting MATLAB.

For MATLAB clients on Windows systems

1 Create the java.opts file in a directory where you intend to start MATLAB.

2 Create a shortcut to MATLAB.

3 Right-click the shortcut and select Properties.

4 In the Properties dialog box, specify the name of the directory in which you
created the java.opts file as the MATLAB startup directory.

For computers running MATLAB workers, place the modified java.opts
file in

matlabroot/toolbox/distcomp/bin

Job Managers
For job managers, the Java memory allocation limit is set in the mdce_def file.

On Windows systems, this file can be found at

matlabroot/toolbox/distcomp/bin/mdce_def.sh

On UNIX and Macintosh systems, this file can be found at

matlabroot\toolbox\distcomp\bin\mdce_def.bat

The parameter in this file controlling the Java memory limit is
JOB_MANAGER_MAXIMUM_MEMORY. You should set this limit to four times the
value you need for data transfers in your job. For example, to accommodate
data transfers of 100 MB, modify the line for UNIX or Macintosh to read

2-13

2 Programming Overview

JOB_MANAGER_MAXIMUM_MEMORY="400m"

Or for Windows, to read

set JOB_MANAGER_MAXIMUM_MEMORY=400m

Note Although you can increase the amount of data that you can transfer
between objects, it is probably more efficient to have the distributed
computing processes directly access large data sets in a shared file system.
See “Directly Accessing Files” on page 4-7.

File Access and Permissions

Ensuring That Windows Workers Can Access Files
By default, a worker on a Windows node is installed as a service running as
LocalSystem, so it does not have access to mapped network drives.

Often a network is configured to not allow services running as LocalSystem
to access UNC or mapped network shares. In this case, you must run MDCE
under a different user with rights to log on as a service. See the section
“Setting the User” in the MATLAB Distributed Computing Engine System
Administrator’s Guide.

Task Function Is Unavailable
If a worker cannot find the task function, it returns the error message

Error using ==> feval
Undefined command/function 'function_name'.

The worker that ran the task did not have access to the function
function_name. One solution is to make sure the location of the function’s
file, function_name.m, is included in the job’s PathDependencies property.
Another solution is to transfer the function file to the worker by adding
function_name.m to the FileDependencies property of the job.

2-14

Troubleshooting and Debugging

Load and Save Errors
If a worker cannot save or load a file, you might see the error messages

??? Error using ==> save
Unable to write file myfile.mat: permission denied.
??? Error using ==> load
Unable to read file myfile.mat: No such file or directory.

In determining the cause of this error, consider the following questions:

• What is the worker’s current directory?

• Can the worker find the file or directory?

• What user is the worker running as?

• Does the worker have permission to read or write the file in question?

Tasks or Jobs Remain in Queued State
A job or task might get stuck in the queued state. To investigate the cause of
this problem, look for the scheduler’s logs:

• LSF might send e-mails with error messages.

• CCS, LSF, and mpiexec save output messages in a debug log. See the
getDebugLog reference page.

• If using a generic scheduler, make sure the submit function redirects error
messages to a log file.

Possible causes of the problem are

• MATLAB failed to start due to licensing errors, is not on the default path
on the worker, or is not installed in the location where the scheduler
expected it to be.

• MATLAB could not read/write the job input/output files in the scheduler’s
data location. The data location may not be accessible to all the worker
nodes, or the user that MATLAB runs as does not have permission to
read/write the job files.

2-15

2 Programming Overview

• If using a generic scheduler

- The environment variable MDCE_DECODE_FUNCTION was not defined
before the MATLAB worker started.

- The decode function was not on the worker’s path.

• If using mpiexec

- The passphrase to smpd was incorrect or missing.

- The smpd daemon was not running on all the specified machines.

No Results or Failed Job

Task Errors
If your job returned no results (i.e., getAllOutputArguments(job) returns an
empty cell array), it is probable that the job failed and some of its tasks have
their ErrorMessage and ErrorIdentifier properties set.

You can use the following code to identify tasks with error messages:

errmsgs = get(yourjob.Tasks, {'ErrorMessage'});
nonempty = ~cellfun(@isempty, errmsgs);
celldisp(errmsgs(nonempty));

This code displays the nonempty error messages of the tasks found in the job
object yourjob.

Debug Logs
If you are using a supported third-party scheduler, you can use the
getDebugLog function to read the debug log from the scheduler for a particular
job or task.

For example, find the failed job on your LSF scheduler, and read its debug log.

sched = findResource('scheduler', 'type', 'lsf')
failedjob = findJob(sched, 'State', 'failed');
message = getDebugLog(sched, failedjob(1))

2-16

Troubleshooting and Debugging

Connection Problems Between the Client and Job
Manager
Detailed instructions for diagnosing connection problems between the client
and job manager can be found in some of the Bug Reports listed on the
MathWorks Web site. The following sections can help you identify the general
nature of some connection problems.

Client Cannot See the Job Manager
If you cannot locate your job manager with

findResource('scheduler','type','jobmanager')

the most likely reasons for this failure are

• The client cannot contact the job manager host via multicast. Try to fully
specify where to look for the job manager by using the LookupURL property
in your call to findResource:

findResource('scheduler','type','jobmanager', ...
'LookupURL','JobMgrHostName')

• The job manager is currently not running.

• Firewalls do not allow traffic from the client to the job manager.

• The client and the job manager are not running the same version of the
software.

• The client and the job manager cannot resolve each other’s short hostnames.

Job Manager Cannot See the Client
If findResource displays a warning message that the job manager cannot
open a TCP connection to the client computer, the most likely reasons for
this are

• Firewalls do not allow traffic from the job manager to the client.

• The job manager cannot resolve the short hostname of the client computer.
Use dctconfig to change the hostname that the job manager will use for
contacting the client.

2-17

http://www.mathworks.com/support/bugreports/?product=DM&product=DW&release=R14SP3

2 Programming Overview

2-18

3

Evaluating Functions in a
Cluster

In many cases, the tasks of a job are all the same, or there are a limited
number of different kinds of tasks in a job. The Distributed Computing
Toolbox offers a solution for these cases that alleviates you from having to
define individual tasks and jobs when evaluating a function in a cluster of
workers. The two ways of evaluating a function on a cluster are described in
the following sections:

Evaluating Functions Synchronously
(p. 3-2)

Evaluating a function in the cluster
while the MATLAB client is blocked

Evaluating Functions
Asynchronously (p. 3-8)

Evaluating a function in the cluster
in the background, while the
MATLAB client continues

3 Evaluating Functions in a Cluster

Evaluating Functions Synchronously
When you evaluate a function in a cluster of computers with dfeval, you
provide basic required information, such as the function to be evaluated, the
number of tasks to divide the job into, and the variable into which the results
are returned. Synchronous (sync) evaluation in a cluster means that MATLAB
is blocked until the evaluation is complete and the results are assigned to the
designated variable. So you provide the necessary information, while the
Distributed Computing Toolbox handles all the job-related aspects of the
function evaluation.

When executing the dfeval function, the toolbox performs all these steps
of running a job:

1 Finds a job manager

2 Creates a job

3 Creates tasks in that job

4 Submits the job to the queue in the job manager

5 Retrieves the results from the job

6 Destroys the job

The following sections describe dfeval:

• “Scope of dfeval” on page 3-2

• “Arguments of dfeval” on page 3-3

• “Example — Using dfeval” on page 3-4

Scope of dfeval
By allowing the system to perform all the steps for creating and running jobs
with a single function call, you do not have access to the full flexibility offered
by the Distributed Computing Toolbox. However, this narrow functionality
meets the requirements of many straightforward applications. To focus the
scope of dfeval, the following limitations apply:

3-2

Evaluating Functions Synchronously

• You can pass property values to the job object; but you cannot set any
task-specific properties, including callback functions, unless you use
configurations.

• All the tasks in the job must have the same number of input arguments.

• All the tasks in the job must have the same number of output arguments.

• If you are using a third-party scheduler instead of the job manager, you
must use configurations in your call to dfeval. See “Programming with
User Configurations” on page 2-5, and the reference page for dfeval.

• You do not have direct access to the job manager, job, or task objects, i.e.,
there are no objects in your MATLAB workspace to manipulate (though
you can get them using findResource and the properties of the scheduler
object). Note that dfevalasync returns a job object.

• Without access to the objects and their properties, you do not have control
over the handling of errors.

Arguments of dfeval
Suppose the function myfun accepts three input arguments, and generates two
output arguments. To run a job with four tasks that call myfun, you could type

[X, Y] = dfeval(@myfun, {a1 a2 a3 a4}, {b1 b2 b3 b4}, {c1 c2 c3 c4});

The number of elements of the input argument cell arrays determines the
number of tasks in the job. All input cell arrays must have the same number
of elements. In this example, there are four tasks.

Because myfun returns two arguments, the results of your job will be assigned
to two cell arrays, X and Y. These cell arrays will have four elements each, for
the four tasks. The first element of X will have the first output argument from
the first task, the first element of Y will have the second argument from the
first task, and so on.

The following table shows how the job is divided into tasks and where the
results are returned.

3-3

3 Evaluating Functions in a Cluster

Task Function Call Results

myfun(a1, b1, c1) X{1}, Y{1}

myfun(a2, b2, c2) X{2}, Y{2}

myfun(a3, b3, c3) X{3}, Y{3}

myfun(a4, b4, c4) X{4}, Y{4}

So using one dfeval line would be equivalent to the following code, except
that dfeval can run all the statements simultaneously on separate machines.

[X{1}, Y{1}] = myfun(a1, b1, c1);
[X{2}, Y{2}] = myfun(a2, b2, c2);
[X{3}, Y{3}] = myfun(a3, b3, c3);
[X{4}, Y{4}] = myfun(a4, b4, c4);

For further details and examples of the dfeval function, see the dfeval
reference page.

Example — Using dfeval
Suppose you have a function called averages, which returns both the mean
and median of three input values. The function might look like this.

function [mean_, median_] = averages (in1, in2, in3)
% AVERAGES Return mean and median of three input values
mean_ = mean([in1, in2, in3]);
median_ = median([in1, in2, in3]);

You can use dfeval to run this function on four sets of data using four tasks
in a single job. The input data can be represented by the four vectors,

[1 2 6]
[10 20 60]
[100 200 600]
[1000 2000 6000]

3-4

Evaluating Functions Synchronously

A quick look at the first set of data tells you that its mean is 3, while its
median is 2. So,

[x,y] = averages(1,2,6)
x =

3
y =

2

When calling dfeval, its input requires that the data be grouped together
such that the first input argument to each task function is in the first cell
array argument to dfeval, all second input arguments to the task functions
are grouped in the next cell array, and so on. Because we want to evaluate
four sets of data with four tasks, each of the three cell arrays will have four
elements. In this example, the first arguments for the task functions are 1,
10, 100, and 1000. The second inputs to the task functions are 2, 20, 200, and
2000. With the task inputs arranged thus, the call to dfeval looks like this.

[A, B] = dfeval(@averages, {1 10 100 1000}, ...
{2 20 200 2000}, {6 60 600 6000}, 'jobmanager', ...
'MyJobManager', 'FileDependencies', {'averages.m'})

A =
[3]
[30]
[300]
[3000]

B =
[2]
[20]
[200]
[2000]

Notice that the first task evaluates the first element of the three cell arrays.
The results of the first task are returned as the first elements of each of the
two output values. In this case, the first task returns a mean of 3 and median
of 2. The second task returns a mean of 30 and median of 20.

3-5

3 Evaluating Functions in a Cluster

If the original function were written to accept one input vector, instead of
three input values, it might make the programming of dfeval simpler. For
example, suppose your task function were

function [mean_, median_] = avgs (V)
% AVGS Return mean and median of input vector
mean_ = mean(V);
median_ = median(V);

Now the function requires only one argument, so a call to dfeval requires
only one cell array. Furthermore, each element of that cell array can be a
vector containing all the values required for an individual task. The first
vector is sent as a single argument to the first task, the second vector to the
second task, and so on.

[A,B] = dfeval(@avgs, {[1 2 6] [10 20 60] ...
[100 200 600] [1000 2000 6000]}, 'jobmanager', ...
'MyJobManager', 'FileDependencies', {'avgs.m'})

A =
[3]
[30]
[300]
[3000]

B =
[2]
[20]
[200]
[2000]

If you cannot vectorize your function, you might have to manipulate your
data arrangement for using dfeval. Returning to our original data in this
example, suppose you want to start with data in three vectors.

v1 = [1 2 6];
v2 = [10 20 60];
v3 = [100 200 600];
v4 = [1000 2000 6000];

3-6

Evaluating Functions Synchronously

First put all your data in a single matrix.

dataset = [v1; v2; v3; v4]
dataset =

1 2 6
10 20 60

100 200 600
1000 2000 6000

Then make cell arrays containing the elements in each column.

c1 = num2cell(dataset(:,1));
c2 = num2cell(dataset(:,2));
c3 = num2cell(dataset(:,3));

Now you can use these cell arrays as your input arguments for dfeval.

[A, B] = dfeval(@averages, c1, c2, c3, 'jobmanager', ...
'MyJobManager', 'FileDependencies', {'averages.m'})

A =
[3]
[30]
[300]
[3000]

B =
[2]
[20]
[200]
[2000]

3-7

3 Evaluating Functions in a Cluster

Evaluating Functions Asynchronously
The dfeval function operates synchronously, that is, it blocks the MATLAB
command line until its execution is complete. If you want to send a job to the
job manager and get access to the command line while the job is being run
asynchronously (async), you can use the dfevalasync function.

The dfevalasync function operates in the same way as dfeval, except that it
does not block the MATLAB command line, and it does not directly return
results.

To asynchronously run the example of the previous section, type

job1 = dfevalasync(@averages, 2, c1, c2, c3, 'jobmanager', ...
'MyJobManager', 'FileDependencies', {'averages.m'});

Note that you have to specify the number of output arguments that each
task will return (2, in this example).

The MATLAB session does not wait for the job to execute, but returns the
prompt immediately. Instead of assigning results to cell array variables, the
function creates a job object in the MATLAB workspace that you can use to
access job status and results.

You can use the MATLAB session to perform other operations while the job is
being run on the cluster. When you want to get the job’s results, you should
make sure it is finished before retrieving the data.

waitForState(job1, 'finished')
results = getAllOutputArguments(job1)

results =
[3] [2]
[30] [20]
[300] [200]
[3000] [2000]

The structure of the output arguments is now slightly different than it was for
dfeval. The getAllOutputArguments function returns all output arguments
from all tasks in a single cell array, with one row per task. In this example,

3-8

Evaluating Functions Asynchronously

each row of the cell array results will have two elements. So, results{1,1}
contains the first output argument from the first task, results{1,2} contains
the second argument from the first task, and so on.

For further details and examples of the dfevalasync function, see the
dfevalasync reference page.

3-9

3 Evaluating Functions in a Cluster

3-10

4

Programming Distributed
Jobs

A distributed job is one whose tasks do not directly communicate with each
other. The tasks do not need to run simultaneously, and a worker might run
several tasks of the same job in succession. Typically, all tasks perform the
same or similar functions on different data sets in an embarrassingly parallel
configuration.

The following sections describe how to program distributed jobs:

Using a Job Manager (p. 4-2) Programming a distributed job using
the job manager as a scheduler

Using a Fully Supported Third-Party
Scheduler (p. 4-13)

Programming a distributed job using
a Windows CCS or Platform LSF
scheduler to distribute the tasks

Using the Generic Scheduler
Interface (p. 4-24)

Programming a distributed job using
a generic third-party scheduler to
distribute the tasks

4 Programming Distributed Jobs

Using a Job Manager
The following sections describe how to program a distributed job using the
MathWorks job manager as your task scheduler.

• “Creating and Running Jobs with a Job Manager” on page 4-2

• “Sharing Code” on page 4-6

• “Managing Objects in the Job Manager” on page 4-9

Creating and Running Jobs with a Job Manager
For jobs that are more complex or require more control than the functionality
offered by dfeval, you have to program all the steps for creating and running
of the job.

This section details the steps of a typical programming session with the
Distributed Computing Toolbox using a MathWorks job manager:

• “Find a Job Manager” on page 4-2

• “Create a Job” on page 4-3

• “Create Tasks” on page 4-5

• “Submit a Job to the Job Queue” on page 4-5

• “Retrieve the Job’s Results” on page 4-6

Note that the objects that the client session uses to interact with the job
manager are only references to data that is actually contained in the job
manager process, not in the client session. After jobs and tasks are created,
you can close your client session and restart it, and your job is still stored in
the job manager. You can find existing jobs using the findJob function or the
Jobs property of the job manager object.

Find a Job Manager
You use the findResource function to identify available job managers and to
create an object representing a job manager in your local MATLAB session.

4-2

Using a Job Manager

To find a specific job manager, use parameter-value pairs for matching. In
this example, MyJobManager is the name of the job manager, while MyJMhost
is the hostname of the machine running the job manager lookup service.

jm = findResource('scheduler','type','jobmanager', ...
'Name','MyJobManager','LookupURL','MyJMhost')

get(jm)
Name: 'MyJobManager'

Hostname: 'bonanza'
HostAddress: {'123.123.123.123'}

Jobs: [0x1 double]
State: 'running'

Configuration: ''
NumberOfBusyWorkers: 0

BusyWorkers: [0x1 double]
NumberOfIdleWorkers: 2

IdleWorkers: [2x1 distcomp.worker]

If your network supports multicast, you can omit property values to search
on, and findResource returns all available job managers.

all_managers = findResource('scheduler','type','jobmanager')

You can then examine the properties of each job manager to identify which
one you want to use.

for i = 1:length(all_managers)
get(all_managers(i))

end

When you have identified the job manager you want to use, you can isolate
it and create a single object.

jm = all_managers(3)

Create a Job
You create a job with the createJob function. Although you execute this
command in the client session, the job is actually created on the job manager.

job1 = createJob(jm)

4-3

4 Programming Distributed Jobs

This statement creates a job on the job manager jm, and creates the job object
job1 in the client session. Use get to see the properties of this job object.

get(job1)
Name: 'job_3'

ID: 3
UserName: 'eng864'

Tag: ''
State: 'pending'

RestartWorker: 0
Timeout: Inf

MaximumNumberOfWorkers: 2.1475e+009
MinimumNumberOfWorkers: 1

CreateTime: 'Thu Oct 21 19:38:08 EDT 2004'
SubmitTime: ''
StartTime: ''

FinishTime: ''
Tasks: [0x1 double]

FileDependencies: {0x1 cell}
PathDependencies: {0x1 cell}

JobData: []
Parent: [1x1 distcomp.jobmanager]

UserData: []
QueuedFcn: []

RunningFcn: []
FinishedFcn: []

Note that the job’s State property is pending. This means the job has not
been queued for running yet, so you can now add tasks to it.

The job manager’s Jobs property is now a 1-by-1 array of distcomp.job
objects, indicating the existence of your job.

get(jm)
Name: 'MyJobManager'

Hostname: 'bonanza'
HostAddress: {'123.123.123.123'}

Jobs: [1x1 distcomp.job]
State: 'running'

Configuration: ''
NumberOfBusyWorkers: 0

4-4

Using a Job Manager

BusyWorkers: [0x1 double]
NumberOfIdleWorkers: 2

IdleWorkers: [2x1 distcomp.worker]

You can transfer files to the worker by using the FileDependencies property
of the job object. For details, see the FileDependencies reference page and
“Sharing Code” on page 4-6.

Create Tasks
After you have created your job, you can create tasks for the job using the
createTask function. Tasks define the functions to be evaluated by the
workers during the running of the job. Often, the tasks of a job are all
identical. In this example, each task will generate a 3-by-3 matrix of random
numbers.

createTask(job1, @rand, 1, {3,3});
createTask(job1, @rand, 1, {3,3});
createTask(job1, @rand, 1, {3,3});
createTask(job1, @rand, 1, {3,3});
createTask(job1, @rand, 1, {3,3});

The Tasks property of job1 is now a 5-by-1 matrix of task objects.

get(job1,'Tasks')
ans =

distcomp.task: 5-by-1

Submit a Job to the Job Queue
To run your job and have its tasks evaluated, you submit the job to the job
queue with the submit function.

submit(job1)

The job manager distributes the tasks of job1 to its registered workers for
evaluation.

4-5

4 Programming Distributed Jobs

Retrieve the Job’s Results
The results of each task’s evaluation are stored in that task object’s
OutputArguments property as a cell array. Use the function
getAllOutputArguments to retrieve the results from all the tasks in the job.

results = getAllOutputArguments(job1);

Display the results from each task.

results{1:5}

0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

0.4447 0.9218 0.4057
0.6154 0.7382 0.9355
0.7919 0.1763 0.9169

0.4103 0.3529 0.1389
0.8936 0.8132 0.2028
0.0579 0.0099 0.1987

0.6038 0.0153 0.9318
0.2722 0.7468 0.4660
0.1988 0.4451 0.4186

0.8462 0.6721 0.6813
0.5252 0.8381 0.3795
0.2026 0.0196 0.8318

Sharing Code
Because the tasks of a job are evaluated on different machines, each machine
must have access to all the files needed to evaluate its tasks. The basic
mechanisms for sharing code are explained in the following sections:

• “Directly Accessing Files” on page 4-7

• “Passing Data Between Sessions” on page 4-7

• “Passing M-Code for Startup and Finish” on page 4-8

4-6

Using a Job Manager

Directly Accessing Files
If the workers all have access to the same drives on the network, they can
access needed files that reside on these shared resources. This is the preferred
method for sharing data, as it minimizes network traffic.

You must define each worker session’s path so that it looks for files in the
right places. You can define the path

• By using the job’s PathDependencies property. This is the preferred
method for setting the path, because it is specific to the job.

• By putting the path command in any of the appropriate startup files for
the worker:

- matlabroot\toolbox\local\startup.m

- matlabroot\toolbox\distcomp\user\jobStartup.m

- matlabroot\toolbox\distcomp\user\taskStartup.m

These files can be passed to the worker by the job’s FileDependencies or
PathDependencies property. Otherwise, the version of each of these files
that is used is the one highest on the worker’s path.

Access to files among shared resources can depend upon permissions based on
the user name. You can set the user name with which the job manager and
worker services of the MATLAB Distributed Computing Engine run by setting
the MDCEUSER value in the mdce_def file before starting the services. For
Windows systems, there is also MDCEPASS for providing the account password
for the specified user. For an explanation of service default settings and the
mdce_def file, see “Defining the Script Defaults” in the MATLAB Distributed
Computing Engine System Administrator’s Guide.

Passing Data Between Sessions
A number of properties on task and job objects are designed for passing code
or data from client to job manager to worker, and back. This information
could include M-code necessary for task evaluation, or the input data for
processing or output data resulting from task evaluation. All these properties
are described in detail in their own reference pages:

4-7

4 Programming Distributed Jobs

• InputArguments — This property of each task contains the input data
provided to the task constructor. This data gets passed into the function
when the worker performs its evaluation.

• OutputArguments — This property of each task contains the results of the
function’s evaluation.

• JobData — This property of the job object contains data that gets sent
to every worker that evaluates tasks for that job. This property works
efficiently because the data is passed to a worker only once per job, saving
time if that worker is evaluating more than one task for the job.

• FileDependencies — This property of the job object lists all the directories
and files that get zipped and sent to the workers. At the worker, the data is
unzipped, and the entries defined in the property are added to the path of
the MATLAB worker session.

• PathDependencies — This property of the job object provides pathnames
that are added to the MATLAB workers’ path, reducing the need for data
transfers in a shared file system.

The default maximum amount of data that can be sent in a single call
for setting properties is approximately 50 MB. This limit applies to the
OutputArguments property as well as to data passed into a job. If the limit is
exceeded, you get an error message. For information on how to increase this
limit, see “Object Data Size Limitations” on page 2-12.

Passing M-Code for Startup and Finish
As a session of MATLAB, a worker session executes its startup.m file each
time it starts. You can place the startup.m file in any directory on the
worker’s MATLAB path, such as toolbox/distcomp/user.

Three additional M-files can initialize and clean up a worker session as it
begins or completes evaluations of tasks for a job:

• jobStartup.m automatically executes on a worker when the worker runs
its first task of a job.

• taskStartup.m automatically executes on a worker each time the worker
begins evaluation of a task.

4-8

Using a Job Manager

• taskFinish.m automatically executes on a worker each time the worker
completes evaluation of a task.

Empty versions of these files are provided in the directory

matlabroot/toolbox/distcomp/user

You can edit these files to include whatever M-code you want the worker to
execute at the indicated times.

Alternatively, you can create your own versions of these M-files and pass
them to the job as part of the FileDependencies property, or include the path
names to their locations in the PathDependencies property.

The worker gives precedence to the versions provided in the FileDependencies
property, then to those pointed to in the PathDependencies property. If any of
these files is not included in these properties, the worker uses the version of
the file in the toolbox/distcomp/user directory of the worker’s MATLAB
installation.

For further details on these M-files, see the jobStartup, taskStartup, and
taskFinish reference pages.

Managing Objects in the Job Manager
Because all the data of jobs and tasks resides in the job manager, these
objects continue to exist even if the client session that created them has
ended. The following sections describe how to access these objects and how to
permanently remove them:

• “What Happens When the Client Session Ends” on page 4-9

• “Recovering Objects” on page 4-10

• “Resetting Callback Properties” on page 4-11

• “Permanently Removing Objects” on page 4-11

What Happens When the Client Session Ends
When you close the client session of the Distributed Computing Toolbox, all of
the objects in the workspace are cleared. However, the objects in the MATLAB

4-9

4 Programming Distributed Jobs

Distributed Computing Engine remain in place. Job objects and task objects
reside on the job manager. Local objects in the client session can refer to job
managers, jobs, tasks, and workers. When the client session ends, only these
local reference objects are lost, not the actual objects in the engine.

Therefore, if you have submitted your job to the job queue for execution, you
can quit your client session of MATLAB, and the job will be executed by the
job manager. The job manager maintains its job and task objects. You can
retrieve the job results later in another client session.

Recovering Objects
A client session of the Distributed Computing Toolbox can access any of the
objects in the MATLAB Distributed Computing Engine, whether the current
client session or another client session created these objects.

You create job manager and worker objects in the client session by using the
findResource function. These client objects refer to sessions running in the
engine.

jm = findResource('scheduler','type','jobmanager', ...
'Name','Job_Mgr_123','LookupURL','JobMgrHost')

If your network supports multicast, you can find all available job managers by
omitting any specific property information.

jm_set = findResource('scheduler','type','jobmanager')

The array jm_set contains all the job managers accessible from the client
session. You can index through this array to determine which job manager
is of interest to you.

jm = jm_set(2)

When you have access to the job manager by the object jm, you can create
objects that reference all those objects contained in that job manager. All the
jobs contained in the job manager are accessible in its Jobs property, which is
an array of job objects.

all_jobs = get(jm,'Jobs')

You can index through the array all_jobs to locate a specific job.

4-10

Using a Job Manager

Alternatively, you can use the findJob function to search in a job manager for
particular job identified by any of its properties, such as its State.

finished_jobs = findJob(jm,'State','finished')

This command returns an array of job objects that reference all finished jobs
on the job manager jm.

Resetting Callback Properties
When restarting a client session, you lose the settings of any callback
properties (for example, the FinishedFcn property) on jobs or tasks. These
properties are commonly used to get notifications in the client session of state
changes in their objects. When you create objects in a new client session that
reference existing jobs or tasks, you must reset these callback properties if
you intend to use them.

Permanently Removing Objects
Jobs in the job manager continue to exist even after they are finished, and
after the job manager is stopped and restarted. The ways to permanently
remove jobs from the job manager are explained in the following sections:

• “Destroying Selected Objects” on page 4-11

• “Starting a Job Manager from a Clean State” on page 4-12

Destroying Selected Objects. From the command line in the MATLAB
client session, you can call the destroy function for any job or task object. If
you destroy a job, you destroy all tasks contained in that job.

For example, find and destroy all finished jobs in your job manager that
belong to the user joep.

jm = findResource('jobmanager','name','MyJobManager' ...
'LookupURL','JobMgrHost')

finished_jobs = findJob(jm,'State','finished','UserName','joep')
destroy(finished_jobs)
clear finished_jobs

4-11

4 Programming Distributed Jobs

The destroy function permanently removes these jobs from the job manager.
The clear function removes the object references from the local MATLAB
workspace.

Starting a Job Manager from a Clean State. When a job manager starts,
by default it starts so that it resumes its former session with all jobs intact.
Alternatively, a job manager can start from a clean state with all its former
history deleted. Starting from a clean state permanently removes all job and
task data from the job manager of the specified name on a particular host.

As a network administration feature, the -clean flag of the job manager
startup script is described in“Starting in a Clean State” in the MATLAB
Distributed Computing Engine System Administrator’s Guide.

4-12

Using a Fully Supported Third-Party Scheduler

Using a Fully Supported Third-Party Scheduler
If your network already uses a Load Sharing Facility (LSF) or Windows
Compute Cluster Server (CCS), you can use the Distributed Computing
Toolbox to create jobs to be distributed by your existing scheduler. The
following sections provide instructions for using your scheduler:

• “Creating and Running Jobs with Your Scheduler” on page 4-13

• “Sharing Code” on page 4-19

• “Managing Objects” on page 4-22

Creating and Running Jobs with Your Scheduler
This section details the steps of a typical programming session with the
Distributed Computing Toolbox for jobs distributed to workers by a fully
supported third-party scheduler.

This section assumes you have LSF or CCS installed and
running on your network. For more information about LSF, see
http://www.platform.com/Products/. For more information about CCS, see
http://www.microsoft.com/windowsserver2003/ccs/default.mspx.

The following sections illustrate how to program the Distributed Computing
Toolbox to use these schedulers:

• “Find an LSF Scheduler” on page 4-13

• “Find a CCS Scheduler” on page 4-15

• “Create a Job” on page 4-16

• “Create Tasks” on page 4-17

• “Submit a Job to the Job Queue” on page 4-18

• “Retrieve the Job’s Results” on page 4-18

Find an LSF Scheduler
You use the findResource function to identify the LSF scheduler and to create
an object representing the scheduler in your local MATLAB client session.

4-13

http://www.platform.com/Products/
http://www.platform.com/Products/

4 Programming Distributed Jobs

You specify 'lsf' as the scheduler type for findResource to search for.

sched = findResource('scheduler','type','lsf')

You set properties on the scheduler object to specify

• Where the job data is stored

• That the workers should access job data directly in a shared file system

• The MATLAB root for the workers to use

set(sched, 'DataLocation', '\\apps\data\project_55')
set(sched, 'HasSharedFilesystem', true)
set(sched, 'ClusterMatlabRoot', '\\apps\matlab\')

If DataLocation is not set, the default location for job data is the current
working directory of the MATLAB client the first time you use findResource
to create an object for this type of scheduler. All settable property values on a
scheduler object are local to the MATLAB client, and are lost when you close
the client session or when you remove the object from the client workspace
with delete or clear all.

Note In a shared file system, all nodes require access to the directory specified
in the scheduler object’s DataLocation directory. See the DataLocation
reference page for information on setting this property for a mixed-platform
environment.

You can look at all the property settings on the scheduler object. If no jobs are
in the DataLocation directory, the Jobs property is a 0-by-1 array.

get(sched)

Type: 'lsf'

DataLocation: '\\apps\data\project_55'

HasSharedFilesystem: 1

Jobs: [0x1 double]

ClusterMatlabRoot: '\\apps\matlab\'

ClusterOsType: 'unix'

ClusterName: 'CENTER_MATRIX_CLUSTER'

MasterName: 'masterhost.clusternet.ourdomain.com'

4-14

Using a Fully Supported Third-Party Scheduler

SubmitArguments: ''

ParallelSubmissionWrapperScript: [1x92 char]

Configuration: ''

Find a CCS Scheduler
You use the findResource function to identify the CCS scheduler and to create
an object representing the scheduler in your local MATLAB client session.

You specify 'ccs' as the scheduler type for findResource to search for.

sched = findResource('scheduler','type','ccs')

You set properties on the scheduler object to specify

• Where the job data is stored

• That the workers should access job data directly in a shared file system

• The MATLAB root for the workers to use

• The operating system of the cluster

• The name of the scheduler host

set(sched, 'DataLocation', '\\apps\data\project_106')
set(sched, 'HasSharedFilesystem', true)
set(sched, 'ClusterMatlabRoot', '\\apps\matlab\')
set(shced, 'ClusterOsType', 'pc')
set(sched, 'SchedulerHostname', 'server04')

If DataLocation is not set, the default location for job data is the current
working directory of the MATLAB client the first time you use findResource
to create an object for this type of scheduler. All settable property values on a
scheduler object are local to the MATLAB client, and are lost when you close
the client session or when you remove the object from the client workspace
with delete or clear all.

Note In a shared file system, all nodes require access to the directory
specified in the scheduler object’s DataLocation directory.

4-15

4 Programming Distributed Jobs

You can look at all the property settings on the scheduler object. If no jobs are
in the DataLocation directory, the Jobs property is a 0-by-1 array.

get(sched)
Type: 'ccs'

DataLocation: '\\apps\data\project_106'
HasSharedFilesystem: 1

Jobs: [0x1 double]
ClusterMatlabRoot: '\\apps\matlab\'

ClusterOsType: 'pc'
SchedulerHostname: 'server04'

Configuration: ''

Create a Job
You create a job with the createJob function, which creates a job object in
the client session. The job data is stored in the directory specified by the
scheduler object’s DataLocation property.

j = createJob(sched)

This statement creates the job object j in the client session. Use get to see
the properties of this job object.

get(j)
Type: 'job'
Name: 'Job1'

ID: 1
UserName: 'eng1'

Tag: ''
State: 'pending'

CreateTime: 'Fri Jul 29 16:15:47 EDT 2005'
SubmitTime: ''
StartTime: ''

FinishTime: ''
Tasks: [0x1 double]

FileDependencies: {0x1 cell}
PathDependencies: {0x1 cell}

JobData: []
Parent: [1x1 distcomp.lsfscheduler]

UserData: []

4-16

Using a Fully Supported Third-Party Scheduler

Configuration: ''

This output varies only slightly between LSF and CCS jobs, but is quite
different from a job that uses a job manager. For example, jobs on LSF or CCS
schedulers have no callback functions.

The job’s State property is pending. This state means the job has not been
queued for running yet. This new job has no tasks, so its Tasks property
is a 0-by-1 array.

The scheduler’s Jobs property is now a 1-by-1 array of distcomp.simplejob
objects, indicating the existence of your job.

get(sched, 'Jobs')
Jobs: [1x1 distcomp.simplejob]

You can transfer files to the worker by using the FileDependencies
property of the job object. Workers can access shared files by using
the PathDependencies property of the job object. For details, see the
FileDependencies and PathDependencies reference pages and “Sharing
Code” on page 4-19.

Note In a shared file system, MATLAB clients on many computers can access
the same job data on the network. Properties of a particular job or task should
be set from only one computer at a time.

Create Tasks
After you have created your job, you can create tasks for the job. Tasks define
the functions to be evaluated by the workers during the running of the job.
Often, the tasks of a job are all identical except for different arguments or
data. In this example, each task will generate a 3-by-3 matrix of random
numbers.

createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});

4-17

4 Programming Distributed Jobs

The Tasks property of j is now a 5-by-1 matrix of task objects.

get(j,'Tasks')
ans =

distcomp.simpletask: 5-by-1

Submit a Job to the Job Queue
To run your job and have its tasks evaluated, you submit the job to the
scheduler’s job queue.

submit(j)

The scheduler distributes the tasks of job j to MATLAB workers for
evaluation. For each task, the scheduler starts a MATLAB worker session on
a worker node; this MATLAB worker session runs for only as long as it takes
to evaluate the one task. If the same node evaluates another task in the same
job, it does so with a different MATLAB worker session.

The job runs asynchronously with the MATLAB client. If you need to wait for
the job to complete before you continue in your MATLAB client session, you
can use the waitForState function.

waitForState(j)

The default state to wait for is finished. This function causes MATLAB to
pause until the State property of j is 'finished'.

Note When you use an LSF scheduler in a nonshared file system, the
scheduler might report that a job is in the finished state even though LSF
might not yet have completed transferring the job’s files.

Retrieve the Job’s Results
The results of each task’s evaluation are stored in that task object’s
OutputArguments property as a cell array. Use getAllOutputArguments to
retrieve the results from all the tasks in the job.

results = getAllOutputArguments(j);

4-18

Using a Fully Supported Third-Party Scheduler

Display the results from each task.

results{1:5}

0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

0.4447 0.9218 0.4057
0.6154 0.7382 0.9355
0.7919 0.1763 0.9169

0.4103 0.3529 0.1389
0.8936 0.8132 0.2028
0.0579 0.0099 0.1987

0.6038 0.0153 0.9318
0.2722 0.7468 0.4660
0.1988 0.4451 0.4186

0.8462 0.6721 0.6813
0.5252 0.8381 0.3795
0.2026 0.0196 0.8318

Sharing Code
Because different machines evaluate the tasks of a job, each machine must
have access to all the files needed to evaluate its tasks. The following sections
explain the basic mechanisms for sharing data:

• “Directly Accessing Files” on page 4-19

• “Passing Data Between Sessions” on page 4-20

• “Passing M-Code for Startup and Finish” on page 4-21

Directly Accessing Files
If all the workers have access to the same drives on the network, they can
access needed files that reside on these shared resources. This is the preferred
method for sharing data, as it minimizes network traffic.

4-19

4 Programming Distributed Jobs

You must define each worker session’s path so that it looks for files in the
correct places. You can define the path by

• Using the job’s PathDependencies property. This is the preferred method
for setting the path, because it is specific to the job.

• Putting the path command in any of the appropriate startup files for the
worker:

- matlabroot\toolbox\local\startup.m

- matlabroot\toolbox\distcomp\user\jobStartup.m

- matlabroot\toolbox\distcomp\user\taskStartup.m

These files can be passed to the worker by the job’s FileDependencies or
PathDependencies property. Otherwise, the version of each of these files
that is used is the one highest on the worker’s path.

Passing Data Between Sessions
A number of properties on task and job objects are for passing code or data
from client to scheduler or worker, and back. This information could include
M-code necessary for task evaluation, or the input data for processing or
output data resulting from task evaluation. All these properties are described
in detail in their own reference pages:

• InputArguments — This property of each task contains the input data
provided to the task constructor. This data gets passed into the function
when the worker performs its evaluation.

• OutputArguments — This property of each task contains the results of the
function’s evaluation.

• JobData — This property of the job object contains data that gets sent
to every worker that evaluates tasks for that job. This property works
efficiently because depending on file caching, the data might be passed to
a worker node only once per job, saving time if that node is evaluating
more than one task for the job.

• FileDependencies — This property of the job object lists all the directories
and files that get zipped and sent to the workers. At the worker, the data is
unzipped, and the entries defined in the property are added to the path of
the MATLAB worker session.

4-20

Using a Fully Supported Third-Party Scheduler

• PathDependencies — This property of the job object provides pathnames
that are added to the MATLAB workers’ path, reducing the need for data
transfers in a shared file system.

Passing M-Code for Startup and Finish
As a session of MATLAB, a worker session executes its startup.m file each
time it starts. You can place the startup.m file in any directory on the
worker’s MATLAB path, such as toolbox/distcomp/user.

Three additional M-files can initialize and clean a worker session as it begins
or completes evaluations of tasks for a job:

• jobStartup.m automatically executes on a worker when the worker runs
its first task of a job.

• taskStartup.m automatically executes on a worker each time the worker
begins evaluation of a task.

• taskFinish.m automatically executes on a worker each time the worker
completes evaluation of a task.

Empty versions of these files are provided in the directory

matlabroot/toolbox/distcomp/user

You can edit these files to include whatever M-code you want the worker to
execute at the indicated times.

Alternatively, you can create your own versions of these M-files and pass
them to the job as part of the FileDependencies property, or include the
pathnames to their locations in the PathDependencies property.

The worker gives precedence to the versions provided in the FileDependencies
property, then to those pointed to in the PathDependencies property. If any of
these files is not included in these properties, the worker uses the version of
the file in the toolbox/distcomp/user directory of the worker’s MATLAB
installation.

For further details on these M-files, see the jobStartup, taskStartup, and
taskFinish reference pages.

4-21

4 Programming Distributed Jobs

Managing Objects
Objects that the client session uses to interact with the scheduler are only
references to data that is actually contained in the directory specified by
the DataLocation property. After jobs and tasks are created, you can shut
down your client session, restart it, and your job will still be stored in that
remote location. You can find existing jobs using the Jobs property of the
recreated scheduler object.

The following sections describe how to access these objects and how to
permanently remove them:

• “What Happens When the Client Session Ends?” on page 4-22

• “Recovering Objects” on page 4-22

• “Destroying Jobs” on page 4-23

What Happens When the Client Session Ends?
When you close the client session of the Distributed Computing Toolbox, all of
the objects in the workspace are cleared. However, job and task data remains
in the directory identified by DataLocation. When the client session ends,
only its local reference objects are lost, not the data of the scheduler.

Therefore, if you have submitted your job to the scheduler job queue for
execution, you can quit your client session of MATLAB, and the job will be
executed by the scheduler. The scheduler maintains its job and task data. You
can retrieve the job results later in another client session.

Recovering Objects
A client session of the Distributed Computing Toolbox can access any of the
objects in the DataLocation, whether the current client session or another
client session created these objects.

You create scheduler objects in the client session by using the findResource
function. These objects refer to jobs listed in the scheduler, whose data is
found in the specified DataLocation.

sched = findResource('scheduler', 'type', 'LSF');
set(sched, 'DataLocation', '/apps/data/project_88');

4-22

Using a Fully Supported Third-Party Scheduler

When you have access to the scheduler by the object sched, you can create
objects that reference all the data contained in the specified location for that
scheduler. All the job and task data contained in the scheduler data location
are accessible in the scheduler object’s Jobs property, which is an array of job
objects.

all_jobs = get(sched, 'Jobs')

You can index through the array all_jobs to locate a specific job.

Alternatively, you can use the findJob function to search in a scheduler object
for a particular job identified by any of its properties, such as its State.

finished_jobs = findJob(sched, 'State', 'finished')

This command returns an array of job objects that reference all finished jobs
on the scheduler sched, whose data is found in the specified DataLocation.

Destroying Jobs
Jobs in the scheduler continue to exist even after they are finished. From
the command line in the MATLAB client session, you can call the destroy
function for any job object. If you destroy a job, you destroy all tasks contained
in that job. The job and task data is deleted from the DataLocation directory.

For example, find and destroy all finished jobs in your scheduler whose data is
stored in a specific directory.

sched = findResource('scheduler', 'name', 'LSF');
set(sched, 'DataLocation', '/apps/data/project_88');
finished_jobs = findJob(sched, 'State', 'finished');
destroy(finished_jobs);
clear finished_jobs

The destroy function in this example permanently removes from the
scheduler data those finished jobs whose data is in /apps/data/project_88.
The clear function removes the object references from the local MATLAB
client workspace.

4-23

4 Programming Distributed Jobs

Using the Generic Scheduler Interface
The Distributed Computing Toolbox provides a generic interface that lets you
interact with third-party schedulers, or use your own scripts for distributing
tasks to other nodes on the cluster for evaluation. Programming for generic
schedulers is covered in the following sections:

• “Overview” on page 4-24

• “MATLAB Client Submit Function” on page 4-25

• “Example — Writing the Submit Function” on page 4-29

• “MATLAB Worker Decode Function” on page 4-30

• “Example — Writing the Decode Function” on page 4-32

• “Example — Programming and Running a Job in the Client” on page 4-33

• “Supplied Submit and Decode Functions” on page 4-37

• “Summary” on page 4-38

Overview
Because each job in your application is comprised of several tasks, the purpose
of your scheduler is to allocate a cluster node for the evaluation of each task,
or to distribute each task to a cluster node. The scheduler starts remote
MATLAB worker sessions on the cluster nodes to evaluate individual tasks
of the job. To evaluate its task, a MATLAB worker session needs access to
certain information, such as where to find the job and task data. The generic
scheduler interface provides a means of getting tasks from your Distributed
Computing Toolbox (client) session to your scheduler and thereby to your
cluster nodes.

To evaluate a task, a worker requires five parameters that you must pass from
the client to the worker. The parameters can be passed any way you want to
transfer them, but because a particular one must be an environment variable,
the examples in this section pass all parameters as environment variables.

4-24

Using the Generic Scheduler Interface

��������	
�

��
���������� �����	�����
���������

������
������	�

�	������	
�

��
�����	���������	�����
���������

���	
�
������	�

����
����

Note Whereas a MathWorks job manager keeps MATLAB workers running
between tasks, a third-party scheduler runs MATLAB workers for only as
long as it takes each worker to evaluate its one task.

MATLAB Client Submit Function
When you submit a job to a scheduler, the function identified by the scheduler
object’s SubmitFcn property executes in the MATLAB client session. You
set the scheduler’s SubmitFcn property to identify the submit function and
any arguments you might want to send to it. For example, to use a submit
function called mysubmitfunc, you set the property with the command

set(sched, 'SubmitFcn', @mysubmitfunc)

where sched is the scheduler object in the client session, created with the
findResource function. In this case, the submit function gets called with its
three default arguments: scheduler, job, and properties object, in that order.
The function declaration line of the function might look like this:

function mysubmitfunc(scheduler, job, props)

Inside the function of this example, the three argument objects are known as
scheduler, job, and props.

You can write a submit function that accepts more than the three default
arguments, and then pass those extra arguments by including them in the
definition of the SubmitFcn property.

4-25

4 Programming Distributed Jobs

time_limit = 300
testlocation = 'Plant30'
set(sched, 'SubmitFcn', {@mysubmitfunc, time_limit, testlocation})

In this example, the submit function requires five arguments: the three
defaults, along with the numeric value of time_limit and the string value of
testlocation. The function’s declaration line might look like this:

function mysubmitfunc(scheduler, job, props, localtimeout, plant)

The following discussion focuses primarily on the minimum requirements
of the submit and decode functions.

This submit function has three main purposes:

• To identify the decode function that MATLAB workers run when they start

• To make information about job and task data locations available to the
workers via their decode function

• To instruct your scheduler how to start a MATLAB worker on the cluster
for each task of your job

��������	
�

��
����������

�����	���������������

������
������	�

����
����

���� ���!�� "#$�
%!$
���� �
!&�'� �!$�
&#�
!&
���� �
!&�'� �!��
%!$
���� (!� �!��
%!$
����
��) �!��
%!$

����������

�	�*����+

		��	,

-	�.������"��

�����

�	�
�

Identifying the Decode Function
The client’s submit function and the worker’s decode function work together
as a pair. Therefore, the submit function must identify its corresponding
decode function. The submit function does this by setting the environment

4-26

Using the Generic Scheduler Interface

variable MDCE_DECODE_FUNCTION. The value of this variable is a string
identifying the name of the decode function on the path of the MATLAB
worker. Neither the decode function itself nor its name can be passed to the
worker in a job or task property; the file must already exist before the worker
starts. For more information on the decode function, see “MATLAB Worker
Decode Function” on page 4-30.

Passing Job and Task Data
The third input argument (after scheduler and job) to the submit function is
the object with the properties listed in the following table.

You do not set the values of any of these properties. They are automatically
set by the toolbox so that you can program your submit function to forward
them to the worker nodes.

Property Name Description

StorageConstructor String. Used internally to indicate
that a file system is used to contain
job and task data.

StorageLocation String. Derived from the scheduler
DataLocation property.

JobLocation String. Indicates where this job’s
data is stored.

TaskLocations Cell array. Indicates where each
task’s data is stored. Each element
of this array is passed to a separate
worker.

NumberOfTasks Double. Indicates the number of
tasks in the job. You do not need to
pass this value to the worker, but
you can use it within your submit
function.

With these values passed into your submit function, the function can pass
them to the worker nodes by any of several means. However, because the

4-27

4 Programming Distributed Jobs

name of the decode function must be passed as an environment variable, the
examples that follow pass all the other necessary property values also as
environment variables.

The submit function writes the values of these object properties out to
environment variables with the setenv function.

Defining Scheduler Command to Run MATLAB
The submit function must define the command necessary for your scheduler
to start MATLAB workers. The actual command is specific to your scheduler
and network configuration. The commands for some popular schedulers are
listed in the following table. This table also indicates whether or not the
scheduler automatically passes environment variables with its submission. If
not, your command to the scheduler must accommodate these variables.

Scheduler Scheduler Command
Passes Environment
Variables

Condor condor_submit Not by default.
Command can pass
all or specific variables.

LSF bsub Yes, by default.

PBS qsub Command must specify
which variables to pass.

Sun Grid Engine qsub Command must specify
which variables to pass.

Your submit function might also use some of these properties and others when
constructing and invoking your scheduler command. scheduler, job, and
props (so named only for this example) refer to the first three arguments to
the submit function.

Argument Object Property

scheduler MatlabCommandToRun

scheduler ClusterMatlabRoot

job MinimumNumberOfWorkers

4-28

Using the Generic Scheduler Interface

Argument Object Property

job MaximumNumberOfWorkers

props NumberOfTasks

Example — Writing the Submit Function
The submit function in this example uses environment variables to pass the
necessary information to the worker nodes. Each step below indicates the
lines of code you add to your submit function.

1 Create the function declaration. There are three objects automatically
passed into the submit function as its first three input arguments: the
scheduler object, the job object, and the props object.

function mysubmitfunc(scheduler, job, props)

This example function uses only the three default arguments. You can have
additional arguments passed into your submit function, as discussed in
“MATLAB Client Submit Function” on page 4-25.

2 Identify the values you want to send to your environment variables. For
convenience, you define local variables for use in this function.

decodeFcn = 'mydecodefunc';
jobLocation = get(props, 'JobLocation');
taskLocations = get(props, 'TaskLocations'); %This is a cell array
storageLocation = get(props, 'StorageLocation');
storageConstructor = get(props, 'StorageConstructor');

The name of the decode function that must be available on the MATLAB
worker path is mydecodefunc.

3 Set the environment variables, other than the task locations. All the
MATLAB workers use these values when evaluating tasks of the job.

setenv('MDCE_DECODE_FUNCTION', decodeFcn);
setenv('MDCE_JOB_LOCATION', jobLocation);
setenv('MDCE_STORAGE_LOCATION', storageLocation);
setenv('MDCE_STORAGE_CONSTRUCTOR', storageConstructor);

4-29

4 Programming Distributed Jobs

Your submit function can use any names you choose for the environment
variables, with the exception of MDCE_DECODE_FUNCTION; the MATLAB
worker looks for its decode function identified by this variable. If you use
alternative names for the other environment variables, be sure that the
corresponding decode function also uses your alternative variable names.

4 Set the task-specific variables and scheduler commands. This is where you
instruct your scheduler to start MATLAB workers for each task.

for i = 1:props.NumberOfTasks
setenv('MDCE_TASK_LOCATION', taskLocations{i});
constructSchedulerCommand;

end

The line constructSchedulerCommand represents the code you write to
construct and execute your scheduler’s submit command. This command
is typically a string that combines the scheduler command with necessary
flags, arguments, and values derived from the properties of your distributed
computing object properties. This command is inside the for-loop so that
your scheduler gets a command to start a MATLAB worker on the cluster
for each task.

Note If you are not familiar with your network scheduler, ask your system
administrator for help.

MATLAB Worker Decode Function
The sole purpose of the MATLAB worker’s decode function is to read certain
job and task information into the MATLAB worker session. This information
could be stored in disk files on the network, or it could be available as
environment variables on the worker node. Because the discussion of the
submit function illustrated only the usage of environment variables, so does
this discussion of the decode function.

When working with the decode function, you must be aware of the

• Name and location of the decode function itself

• Names of the environment variables this function must read

4-30

Using the Generic Scheduler Interface

�	������	
�

��
�����	���������	���������������

���	
�
������	�

����
����

���� ���!�� "#$�
%!$
���� �
!&�'� �!$�
&#�
!&
���� �
!&�'� �!��
%!$
���� (!� �!��
%!$
����
��) �!��
%!$

������

�����	���

Identifying File Name and Location
The client’s submit function and the worker’s decode function work together
as a pair. For more information on the submit function, see “MATLAB
Client Submit Function” on page 4-25. The decode function on the worker is
identified by the submit function as the value of the environment variable
MDCE_DECODE_FUNCTION. The environment variable must be copied from the
client node to the worker node. Your scheduler might perform this task for
you automatically; if it does not, you must arrange for this copying.

The value of the environment variable MDCE_DECODE_FUNCTION defines the
filename of the decode function, but not its location. The file cannot be passed
as part of the job PathDependencies or FileDependencies property, because
the function runs in the MATLAB worker before that session has access to
the job. Therefore, the file location must be available to the MATLAB worker
as that worker starts.

Note The decode function must be available on the MATLAB worker’s path.

You can get the decode function on the worker’s path by either moving the file
into a directory on the path (for example, matlabroot/toolbox/local), or by
having the scheduler use cd in its command so that it starts the MATLAB
worker from within the directory that contains the decode function.

4-31

4 Programming Distributed Jobs

In practice, the decode function might be identical for all workers on the
cluster. In this case, all workers can use the same decode function file if it is
accessible on a shared drive.

When a MATLAB worker starts, it automatically runs the file identified by
the MDCE_DECODE_FUNCTION environment variable. This decode function runs
before the worker does any processing of its task.

Reading the Job and Task Information
When the environment variables have been transferred from the client to
the worker nodes (either by the scheduler or some other means), the decode
function of the MATLAB worker can read them with the getenv function.

With those values from the environment variables, the decode function must
set the appropriate property values of the object that is its argument. The
property values that must be set are the same as those in the corresponding
submit function, except that instead of the cell array TaskLocations, each
worker has only the individual string TaskLocation, which is one element of
the TaskLocations cell array. Therefore, the properties you must set within
the decode function on its argument object are as follows:

• StorageConstructor

• StorageLocation

• JobLocation

• TaskLocation

Example — Writing the Decode Function
The decode function must read four environment variables and use their
values to set the properties of the object that is the function’s output.

In this example, the decode function’s argument is the object props.

function props = workerDecodeFunc(props)
% Read the environment variables:
storageConstructor = getenv('MDCE_STORAGE_CONSTRUCTOR');
storageLocation = getenv('MDCE_STORAGE_LOCATION');
jobLocation = getenv('MDCE_JOB_LOCATION');

4-32

Using the Generic Scheduler Interface

taskLocation = getenv('MDCE_TASK_LOCATION');
%
% Set props object properties from the local variables:
set(props, 'StorageConstructor', storageConstructor);
set(props, 'StorageLocation', storageLocation);
set(props, 'JobLocation', jobLocation);
set(props, 'TaskLocation', taskLocation);

When the object is returned from the decode function to the MATLAB worker
session, its values are used internally for managing job and task data.

Example — Programming and Running a Job in the
Client

1. Create a Scheduler Object
You use the findResource function to create an object representing the
scheduler in your local MATLAB client session.

You can specify 'generic' as the name for findResource to search for.
(Any scheduler name starting with the string 'generic' creates a generic
scheduler object.)

sched = findResource('scheduler', 'type', 'generic')

Generic schedulers must use a shared file system for workers to access job
and task data. Set the DataLocation and HasSharedFilesystem properties
to specify where the job data is stored and that the workers should access job
data directly in a shared file system.

set(sched, 'DataLocation', '\\apps\data\project_101')
set(sched, 'HasSharedFilesystem', true)

Note All nodes require access to the directory specified in the scheduler
object’s DataLocation directory. See the DataLocation reference page for
information on setting this property for a mixed-platform environment.

4-33

4 Programming Distributed Jobs

If DataLocation is not set, the default location for job data is the current
working directory of the MATLAB client the first time you use findResource
to create an object for this type of scheduler, which might not be accessible
to the worker nodes.

If MATLAB is not on the worker’s system path, set the ClusterMatlabRoot
property to specify where the workers are to find the MATLAB installation.

set(sched, 'ClusterMatlabRoot', '\\apps\matlab\')

You can look at all the property settings on the scheduler object. If no jobs
are in the DataLocation directory, the Jobs property is a 0-by-1 array. All
settable property values on a scheduler object are local to the MATLAB client,
and are lost when you close the client session or when you remove the object
from the client workspace with delete or clear all.

get(sched)
DataLocation: '\\apps\data\project_101'

HasSharedFilesystem: 1
Jobs: [0x1 double]

ClusterMatlabRoot: '\\apps\matlab\'
MatlabCommandToRun: 'matlab -dmlworker -nodisplay -r

distcomp_evaluate_filetask'
Type: 'generic'

SubmitFcn: []

You must set the SubmitFcn property to specify the submit function for this
scheduler.

set(sched, 'SubmitFcn', @mysubmitfunc)

With the scheduler object and the user-defined submit and decode functions
defined, programming and running a job is now similar to doing so with a job
manager or any other type of scheduler.

2. Create a Job
You create a job with the createJob function, which creates a job object in
the client session. The job data is stored in the directory specified by the
scheduler object’s DataLocation property.

4-34

Using the Generic Scheduler Interface

j = createJob(sched)

This statement creates the job object j in the client session. Use get to see
the properties of this job object.

get(j)
Type: 'job'
Name: 'Job1'

ID: 1
UserName: 'neo'

Tag: ''
State: 'pending'

CreateTime: 'Fri Jan 20 16:15:47 EDT 2006'
SubmitTime: ''
StartTime: ''

FinishTime: ''
Tasks: [0x1 double]

FileDependencies: {0x1 cell}
PathDependencies: {0x1 cell}

JobData: []
Parent: [1x1 distcomp.genericscheduler]

UserData: []

Note Properties of a particular job or task should be set from only one
computer at a time.

This generic scheduler job has somewhat different properties than a job that
uses a job manager. For example, this job has no callback functions.

The job’s State property is pending. This state means the job has not been
queued for running yet. This new job has no tasks, so its Tasks property
is a 0-by-1 array.

The scheduler’s Jobs property is now a 1-by-1 array of distcomp.simplejob
objects, indicating the existence of your job.

get(sched)
DataLocation: '\\apps\data\project_101'

HasSharedFilesystem: 1

4-35

4 Programming Distributed Jobs

Jobs: [1x1 distcomp.simplejob]
ClusterMatlabRoot: '\\apps\matlab\'

MatlabCommandToRun: 'matlab -dmlworker -nodisplay -r
distcomp_evaluate_filetask'

Type: 'generic'
SubmitFcn: @mysubmitfunc

3. Create Tasks
After you have created your job, you can create tasks for the job. Tasks define
the functions to be evaluated by the workers during the running of the job.
Often, the tasks of a job are identical except for different arguments or data.
In this example, each task generates a 3-by-3 matrix of random numbers.

createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});

The Tasks property of j is now a 5-by-1 matrix of task objects.

get(j,'Tasks')
ans =

distcomp.simpletask: 5-by-1

4. Submit a Job to the Job Queue
To run your job and have its tasks evaluated, you submit the job to the
scheduler’s job queue.

submit(j)

The scheduler distributes the tasks of j to MATLAB workers for evaluation.

The job runs asynchronously. If you need to wait for it to complete before
you continue in your MATLAB client session, you can use the waitForState
function.

waitForState(j)

4-36

Using the Generic Scheduler Interface

The default state to wait for is finished or failed. This function pauses
MATLAB until the State property of j is 'finished' or 'failed'.

5. Retrieve the Job’s Results
The results of each task’s evaluation are stored in that task object’s
OutputArguments property as a cell array. Use getAllOutputArguments to
retrieve the results from all the tasks in the job.

results = getAllOutputArguments(j);

Display the results from each task.

results{1:5}

0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

0.4447 0.9218 0.4057
0.6154 0.7382 0.9355
0.7919 0.1763 0.9169

0.4103 0.3529 0.1389
0.8936 0.8132 0.2028
0.0579 0.0099 0.1987

0.6038 0.0153 0.9318
0.2722 0.7468 0.4660
0.1988 0.4451 0.4186

0.8462 0.6721 0.6813
0.5252 0.8381 0.3795
0.2026 0.0196 0.8318

Supplied Submit and Decode Functions
There are several submit and decode functions provided with the toolbox for
your use with the generic scheduler interface. These files are in the directory

matlabroot/toolbox/distcomp/examples/integration

4-37

4 Programming Distributed Jobs

In this directory are subdirectories for each of several types of
scheduler, containing wrappers, submit functions, and decode
functions for distributed and parallel jobs. For example, the directory
matlabroot/toolbox/distcomp/examples/integration/pbs contains the
following files for use with a PBS scheduler:

Filename Description

pbsSubmitFcn.m Submit function for a distributed job

pbsDecodeFunc.m Decode function for a distributed job

pbsParallelSubmitFcn.m Submit function for a parallel job

pbsParallelDecode.m Decode function for a parallel job

pbsWrapper.sh Script that is submitted to PBS to start
workers that evaluate the tasks of a
distributed job

pbsParallelWrapper.sh Script that is submitted to PBS to start labs
that evaluate the tasks of a parallel job

Depending on your network and cluster configuration, you might need to
modify these files before they will work in your situation. Ask your system
administrator for help.

As more files or solutions might become available at any time, visit
the support page for this product on the MathWorks Web site at
http://www.mathworks.com/support/product/product.html?product=DM.
This page also provides contact information in case you have any questions.

Summary
The following list summarizes the sequence of events that occur when running
a job that uses the generic scheduler interface:

1 Provide a submit function and a decode function. Be sure the decode
function is on all the MATLAB workers’ paths.

The following steps occur in the MATLAB client session:

4-38

http://www.mathworks.com/support/product/product.html?product=DM

Using the Generic Scheduler Interface

2 Define the SubmitFcn property of your scheduler object to point to the
submit function.

3 Send your job to the scheduler.

submit(job)

4 The client session runs the submit function.

5 The submit function sets environment variables with values derived from
its arguments.

6 The submit function makes calls to the scheduler — generally, a call for
each task (with environment variables identified explicitly, if necessary).

The following step occurs in your network:

7 For each task, the scheduler starts a MATLAB worker session on a cluster
node.

The following steps occur in each MATLAB worker session:

8 The MATLAB worker automatically runs the decode function, finding it
on the path.

9 The decode function reads the pertinent environment variables.

10 The decode function sets the properties of its argument object with values
from the environment variables.

11 The MATLAB worker uses these object property values in processing its
task without your further intervention.

4-39

4 Programming Distributed Jobs

4-40

5

Interactive Parallel Mode

This chapter describes the interactive parallel mode (pmode) of MATLAB in
the following sections.

Introduction (p. 5-2) Introduces the concept of parallel
computing with MATLAB

Getting Started with Interactive
Parallel Mode (p. 5-3)

Provides a quick tutorial to begin
using the interactive parallel mode
of MATLAB

Plotting in pmode (p. 5-6) Describes how to plot when working
in pmode

Limitations and Unexpected Results
(p. 5-8)

Provides information on common
problems with pmode

Troubleshooting (p. 5-11) Suggestions for solving problems you
might encounter in pmode

5 Interactive Parallel Mode

Introduction
The interactive parallel mode (pmode) of MATLAB lets you work interactively
with a parallel job running simultaneously on several labs. Commands you
type at the pmode prompt are executed on all labs at the same time. Each lab
executes the commands in its own workspace on its own variables.

The way the labs keep synchronized is that each lab goes idle when it
completes a command or statement, waiting until all the labs working on this
job have completed the same statement. Only when all the labs are idle, do
they then proceed together to the next pmode input.

5-2

Getting Started with Interactive Parallel Mode

Getting Started with Interactive Parallel Mode
Before you can enter the interactive parallel mode, you need a running
cluster and properly defined configuration; coordinate with your system
administrator for this information. The examples include the prompt so
that you know whether to type at the normal MATLAB prompt (>>) or the
pmode prompt (P>>).

1 Enter the parallel mode (pmode) with the pmode command.

>> pmode start jobmanager 4

2 To see that commands at the pmode prompt are executed on all labs, ask
for help.

P>> help magic

3 To interact with only the MATLAB client from the pmode prompt, and not
the labs, prefix your command with the vertical bar (|) character.

P>> |help magic

4 You can also suspend your pmode session without actually stopping it, to
return to the MATLAB client prompt.

P>> pmode suspend
>> help magic
>> pmode resume
Resuming connection to a parallel job with 4 labs.
P>>

5 Set a variable at the pmode prompt. Notice that the value is set on all
the labs.

P>> x = pi

5-3

5 Interactive Parallel Mode

6 A variable does not necessarily have the same value on every lab. The
labindex function returns the ID particular to each lab working on this
parallel job. In this example, the variable x exists with a different value in
the workspace of each lab.

P>> x = labindex

7 Returns the total number of labs working on the current parallel job with
the numlabs function.

P>> all = numlabs

8 Create a replicated array on all the labs.

P>> segment = [1 2; 3 4; 5 6]

9 Assign a unique value to the array on each lab, dependent on the lab
number. With a different value on each lab, this is a variant array.

P>> segment = segment + 10*labindex

10 Until now, the variant arrays are independent, other than having the same
name. Aggregate the array segments into a coherent array, distributed
among the labs, with the darray function.

P>> whole = darray(segment, 2)

The second argument of 2 indicates that the array is distributed along its
second dimension, or columns. On each lab, the segment is now considered
as the local portion of the whole array.

11 Now, when you operate on the distributed array whole, each lab handles
the calculations on only its portion, or segment, of the array, not the whole
array.

P>> whole = whole + 1000

12 Though the distributed array allows for operations on its entirety, you
can use the local function to access the portion of a distributed array
on a particular lab.

P>> section = local(whole)

5-4

Getting Started with Interactive Parallel Mode

13 If you need the entire array in one workspace, you can use the gather
function.

P>> combined = gather(whole)

Notice, however, that this gathers the entire array into the workspaces of
all the labs.

14 Because the labs do not have displays, if you want to perform any graphical
tasks involving your data, such as plotting, you must do this from the client
workspace. Copy the array to the client workspace.

P>> |pmode lab2client combined 1

Notice that combined is now a 3-by-8 array in the client workspace.

P>> |whos combined

15 Many matrix functions that might be familiar can operate on distributed
arrays. For example, the eye function creates an identity matrix. Now you
can create a distributed identity matrix.

P>> distobj = distributor()
P>> I = eye(8,distobj)

The default distribution is along columns, as evenly distributed as possible.

16 If you require distribution along a different dimension, you can use the
redistribute function. In this example, the argument 1 indicates to
distribute along the first dimension, rows.

P>> I = redistribute(I,1)

17 Exit pmode and return to normal MATLAB.

P>> pmode exit

5-5

5 Interactive Parallel Mode

Plotting in pmode
Because the labs running a job in pmode are MATLAB sessions without
displays, they cannot create plots or other graphic outputs on your desktop.

When working in pmode with distributed arrays, one way to plot a distributed
array is to follow these basic steps:

1 Use the gather function to collect the entire array into the workspace of
each lab.

2 Transfer the whole array from any lab to the MATLAB client with pmode
lab2client.

3 Plot the data from the client workspace.

The following example illustrates this technique.

Create a 1-by-100 distributed array of 0s. With four labs, each lab has a
1-by-25 segment of the whole array.

P>> D = zeros(1,100,distributor)
1: local(D) is 1-by-25
2: local(D) is 1-by-25
3: local(D) is 1-by-25
4: local(D) is 1-by-25

Use a parfor-loop to populate the array so that it contains a sine wave. Each
lab does one-fourth of the array.

P>> parfor i=1:100
D(i) = sin(i*2*pi/100);
end;

Gather the array so that the whole array is contained in the workspace of
each lab.

P>> P = gather(D);

5-6

Plotting in pmode

Transfer the array from the workspace of lab 1 to the MATLAB client
workspace, then plot the array from the client. Note that both commands are
preceded by the | character, as they execute only in the client.

P>> |pmode lab2client P 1
P>> |plot(P)

This is not the only way to plot distributed data. One alternative method,
especially useful when running noninteractive parallel jobs, is to plot the data
to a file, then view it from a later MATLAB session.

5-7

5 Interactive Parallel Mode

Limitations and Unexpected Results
There are some limitations on what you can do in pmode. At other times, the
results of operations in pmode might not be what you first expect.

Evaluating Selection of Code (p. 5-8) You cannot use “Evaluate Selection”
to evaluate code in a pmode session.

Distributing Nonreplicated Arrays
(p. 5-8)

You should use the distribute
function on replicated arrays only.

Using Graphics in pmode (p. 5-10) You cannot run Simulink
interactively on labs in pmode.

Evaluating Selection of Code
When you select an example of code in the documentation or lines from
the Command History and choose Evaluate Selection from the context
menu while in pmode, the request queues in the MATLAB client session and
executes only after you suspend or exit the pmode session.

In general, the entire pmode session is a synchronous operation that blocks
other execution on the MATLAB client until you suspend or exit the pmode
session.

Distributing Nonreplicated Arrays
The distribute function is intended for use only on replicated arrays.
When executing the distribute function, each lab creates a local segment
of the distributed array based on a portion of the array in its workspace.
The following simple example illustrates the result of using distribute on
a variant array.

First, create a variant array, whose value depends on labindex.

P>> x = labindex + (0:1)
1: x =
1: 1 2
2: x =
2: 2 3

5-8

Limitations and Unexpected Results

Notice that the content of x differs on the two labs. When you distribute this
1-by-2 array, each lab gets only one element. With the distribute function,
lab 1 takes for its local portion of the array the first element of the array in
its own workspace; while lab 2 takes the second element of the array in its
own workspace.

P>> distribute(x)
1: local(ans) =
1: 1
2: local(ans) =
2: 3

The result is the distributed array [1 3]. This is neither of the original arrays.

5-9

5 Interactive Parallel Mode

Using Graphics in pmode

Displaying a GUI
The labs that run the tasks of a parallel job are MATLAB sessions without
displays. As a result, these labs cannot display graphical tools and so you
cannot do things like plotting from within pmode. The general approach to
accomplish something graphical is to transfer the data into the workspace
of the MATLAB client using

P>> pmode suspend
>> pmode lab2client var lab

After using the graphical tool on the MATLAB client, you can return to the
pmode job with

>> pmode resume

Using Simulink
Because the labs running a pmode job do not have displays, you cannot use
Simulink to edit diagrams or to perform interactive simulation from within
pmode. If you type simulink at the pmode prompt, the Simulink Library
Browser opens in the background on the labs and is not visible.

You can use the sim command to perform noninteractive simulations in
parallel. If you edit your model in the MATLAB client outside of pmode, you
must save the model before accessing it in the labs via pmode; also, if the
labs had accessed the model previously, they must close and open the model
again to see the latest saved changes.

5-10

Troubleshooting

Troubleshooting
This section provides suggestions for solving some of the problems you might
encounter in parallel mode (pmode).

Hostname Resolution (p. 5-11) What to do if a lab cannot resolve
the hostname of the client

Socket Connections (p. 5-11) What to do if labs cannot connect to
the client

Hostname Resolution
If a lab cannot resolve the hostname of the computer running the MATLAB
client, use dctconfig to change the hostname by which the client machine
advertises itself.

Socket Connections
If a lab cannot open a socket connection to the MATLAB client, try the
following:

• Use dctconfig to change the hostname by which the client machine
advertises itself.

• Make sure that firewalls are not preventing communication between the
lab and client machines.

• Use dctconfig to change the client’s pmodeport property. This determines
the port that the labs will use to contact the client in the next pmode
session.

5-11

5 Interactive Parallel Mode

5-12

6

Programming Parallel Jobs

Parallel jobs are those in which the workers (or labs) can communicate
with each other during the evaluation of their tasks. The following sections
describe how to program parallel jobs:

Introduction (p. 6-2) Explains the difference between
distributed and parallel jobs

Using a Supported Scheduler (p. 6-4) Explains how to program a parallel
job using a job manager or other
supported scheduler

Using the Generic Scheduler
Interface (p. 6-7)

Explains how to program a parallel
job using the generic scheduler
interface to work with any scheduler

Further Notes on Parallel Jobs
(p. 6-9)

Provides useful information for
programming parallel jobs

6 Programming Parallel Jobs

Introduction
A parallel job consists of only a single task that runs simultaneously on
several workers. More specifically, the task is duplicated on each worker, so
each worker can perform the task on a different set of data, or on a particular
segment of a large data set. The workers can communicate with each other as
each executes its task. In this configuration, workers are referred to as labs.

In principle, creating and running parallel jobs is similar to programming
distributed jobs:

1 Find a scheduler.

2 Create a parallel job.

3 Create a task.

4 Submit the job for running.

5 Retrieve the results.

The differences between distributed jobs and parallel jobs are summarized
in the following table.

Distributed Job Parallel Job

MATLAB sessions, called workers,
perform the tasks but do not
communicate with each other.

MATLAB sessions, called labs, can
communicate with each other during
the running of their tasks.

You define any number of tasks in
a job.

You define only one task in a job.
Duplicates of that task run on all
labs running the parallel job.

Tasks need not run simultaneously.
Tasks are distributed to workers as
the workers become available, so a
worker can perform several of the
tasks in a job.

Tasks run simultaneously, so you can
run the job only on as many labs as
are available at run time. The start
of the job might be delayed until the
required number of labs is available.

6-2

Introduction

A parallel job has only one task that runs simultaneously on every lab. The
function that the task runs can take advantage of a lab’s awareness of how
many labs are running the job, which lab this is among those running the job,
and the features that allow labs to communicate with each other.

6-3

6 Programming Parallel Jobs

Using a Supported Scheduler
You can run a parallel job using any type of scheduler. This section illustrates
how to program parallel jobs for supported schedulers (job manager, CCS,
LSF, or mpiexec).

• “Coding the Task Function” on page 6-4

• “Coding in the Client” on page 6-5

Coding the Task Function
In this example, the lab whose labindex value is 1 creates a magic square
comprised of a number of rows and columns that is equal to the number of
labs running the job (numlabs). In this case, four labs run a parallel job with a
4-by-4 magic square. The first lab broadcasts the matrix with labBroadcast
to all the other labs , each of which calculates the sum of one column of the
matrix. All of these column sums are combined with the gplus function to
calculate the total sum of the elements of the original magic square.

The function for this example is shown below.

function total_sum = colsum
if labindex == 1

% Send magic square to other labs
A = labBroadcast(1,magic(numlabs))

else
% Receive broadcast on other labs
A = labBroadcast(1)

end

% Calculate sum of column identified by labindex for this lab
column_sum = sum(A(:,labindex))

% Calculate total sum by combining column sum from all labs
total_sum = gplus(column_sum)

This function is saved as the file colsum.m on the path of the MATLAB client.
It will be sent to each lab by the job’s FileDependencies property.

6-4

Using a Supported Scheduler

While this example has one lab create the magic square and broadcast it
to the other labs, there are alternative methods of getting data to the labs.
Each lab could create the matrix for itself. Alternatively, each lab could read
its part of the data from a common file, the data could be passed in as an
argument to the task function, or the data could be sent in a file contained in
the job’s FileDependencies property. The solution to choose depends on your
network configuration and the nature of the data.

Coding in the Client
As with distributed jobs, you find a scheduler and create a scheduler object in
your MATLAB client by using the findResource function. There are slight
differences in the arguments for findResource, depending on the scheduler
you use, but using configurations to define as many properties as possible
minimizes coding differences between the scheduler types.

You can create and configure the scheduler object with this code:

sched = findResource('scheduler', 'configuration', myconfig)
set(sched, 'Configuration', myconfig)

where myconfig is a string variable with one of the following values,
representing the type of scheduler you are using:

• 'jobmanager'

• 'ccs'

• 'lsf'

• 'mpiexec'

Any required differences for these various scheduling options are controlled
in the configuration file. One configuration file can contain multiple
configurations, one for each type of scheduler. For complete details, see
“Programming with User Configurations” on page 2-5. The configuration
file delivered with the toolbox includes instructions on which properties are
required for each type of scheduler to define a complete configuration. Edit
the configuration file for your configurations according to the instructions of
your system administrator.

6-5

6 Programming Parallel Jobs

When your scheduler object is defined, you create the job object with the
createParallelJob function.

pjob = createParallelJob(sched);

The function file colsum.m (created in “Coding the Task Function” on page
6-4) is on the MATLAB client path, but it has to be made available to the labs.
One way to do this is with the job’s FileDependencies property.

set(pjob, 'FileDependencies', {'colsum.m'})

Here you might also set other properties on the job, for example, setting the
number of workers to use. Again, configurations might be useful in your
particular situation, especially if most of your jobs require many of the same
property settings.

You create the job’s one task with the usual createTask function. In this
example, the task returns only one argument from each lab, and there are no
input arguments to the colsum function.

t = createTask(pjob, @colsum, 1, {})

Use submit to run the job.

submit(pjob)

Make the MATLAB client wait for the job to finish before collecting the
results. The results consist of one value from each lab. The gplus function in
the task shares data between the labs, so that each lab has the same result.

waitForState(pjob)
results = getAllOutputArguments(pjob)
results =

[136]
[136]
[136]
[136]

6-6

Using the Generic Scheduler Interface

Using the Generic Scheduler Interface
This section discusses programming parallel jobs using the generic scheduler
interface. This interface lets you execute jobs on your cluster with any
scheduler you might have.

• “Introduction” on page 6-7

• “Coding in the Client” on page 6-7

Introduction
The principles of using the generic scheduler interface for parallel jobs are the
same as those for distributed jobs. The overview of the concepts and details of
submit and decode functions for distributed jobs are discussed fully in “Using
the Generic Scheduler Interface” on page 4-24 in the chapter on Programming
Distributed Jobs.

Coding in the Client

Configuring the Scheduler Object
Coding a parallel job for a generic scheduler involves the same procedure
as coding a distributed job.

1 Create an object representing your scheduler with findResource.

2 Set the appropriate properties on the scheduler object. Because the
scheduler itself is often common to many users and applications,
it is probably best to use a configuration for programming these
properties. See “Programming with User Configurations” on page
2-5. A template configuration is provided with the toolbox in
matlabroot/toolbox/distcomp/user/distcompUserConfig.m, which
accommodates generic schedulers.

Among the properties required for a parallel job is ParallelSubmitFcn.
The toolbox comes with several submit functions for various schedulers
and platforms; see the following section, “Supplied Submit and Decode
Functions” on page 6-8.

6-7

6 Programming Parallel Jobs

3 Use createParallelJob to create a parallel job object for your scheduler.

4 Create a task, run the job, and retrieve the results as usual.

Supplied Submit and Decode Functions
There are several submit and decode functions provided with the toolbox for
your use with the generic scheduler interface. These files are in the directory

matlabroot/toolbox/distcomp/examples/integration

In this directory are subdirectories for each of several types of
scheduler, containing wrappers, submit functions, and decode
functions for distributed and parallel jobs. For example, the directory
matlabroot/toolbox/distcomp/examples/integration/pbs contains the
following files for use with a PBS scheduler:

Filename Description

pbsSubmitFcn.m Submit function for a distributed job

pbsDecodeFunc.m Decode function for a distributed job

pbsParallelSubmitFcn.m Submit function for a parallel job

pbsParallelDecode.m Decode function for a parallel job

pbsWrapper.sh Script that is submitted to PBS to start
workers that evaluate the tasks of a
distributed job

pbsParallelWrapper.sh Script that is submitted to PBS to start labs
that evaluate the tasks of a parallel job

Depending on your network and cluster configuration, you might need to
modify these files before they will work in your situation. Ask your system
administrator for help.

As more files or solutions might become available at any time, visit
the Support page for this product on the MathWorks Web site at
http://www.mathworks.com/support/product/product.html?product=DM.
This page also provides contact information in case you have any questions.

6-8

http://www.mathworks.com/support/product/product.html?product=DM

Further Notes on Parallel Jobs

Further Notes on Parallel Jobs
This section provides further information you should be aware of when
programming parallel jobs.

• “Number of Tasks in a Parallel Job” on page 6-9

• “Avoiding Deadlock and Other Dependency Errors” on page 6-10

Number of Tasks in a Parallel Job
Although you create only one task for a parallel job, the system copies this
task for each worker that runs the job. For example, if a parallel job runs on
four workers (labs), the Tasks property of the job contains four task objects.
The first task in the job’s Tasks property corresponds to the task run by the
lab whose labindex is 1, and so on, so that the ID property for the task object
and labindex for the lab that ran that task have the same value. Therefore,
the sequence of results returned by the getAllOutputArguments function
corresponds to the value of labindex and to the order of tasks in the job’s
Tasks property.

6-9

6 Programming Parallel Jobs

Avoiding Deadlock and Other Dependency Errors
Because code running in one lab for a parallel job can block execution until
some corresponding code executes on another lab, the potential for deadlock
exists in parallel jobs. This is most likely to occur when transferring data
between labs or when making code dependent upon the labindex in an if
statement. Some examples illustrate common pitfalls.

Suppose you have a distributed array D, and you want to use the gather
function to assemble the entire array in the workspace of a single lab.

if labindex == 1
assembled = gather(D);

end

The reason this fails is because the gather function requires communication
between all the labs across which the array is distributed. When the if
statement limits execution to a single lab, the other labs required for
execution of the function are not executing the statement.

In another example, suppose you want to transfer data from every lab to the
next lab on the right (defined as the next higher labindex). First you define
for each lab what the labs on the left and right are.

from_lab_left = mod(labindex - 2, numlabs) + 1;
to_lab_right = mod(labindex, numlabs) + 1;

Then try to pass data around the ring.

labSend (outdata, to_lab_right);
indata = labReceive(from_lab_left);

The reason this code might fail is because, depending on the size of the data
being transferred, the labSend function can block execution in a lab until the
corresponding receiving lab executes its labReceive function. In this case, all
the labs are attempting to send at the same time, and none are attempting to
receive while labSend has them blocked. In other words, none of the labs get
to their labReceive statements because they are all blocked at the labSend
statement. To avoid this particular problem, you can use the labSendReceive
function.

6-10

7

Parallel Math

This chapter describes the distribution of data across several labs, and the
functionality provided for operations on that data in parallel jobs and the
interactive parallel mode of MATLAB. The sections are as follows.

Array Types (p. 7-2) Describes the various types of arrays
used in parallel jobs, including
pmode

Working with Distributed Arrays
(p. 7-5)

Describes how to use distributed
arrays for calculation

Using a Parallel for-Loop (parfor)
(p. 7-17)

Describes how to program a parallel
for-loop with distributed arrays

Using MATLAB Functions on
Distributed Arrays (p. 7-20)

MATLAB functions that operate on
distributed arrays

7 Parallel Math

Array Types
All built-in data types and data structures supported by MATLAB are also
supported in the MATLAB parallel computing environment. This includes
arrays of any number of dimensions containing numeric, character, logical
values, cells, or structures; but not function handles or user-defined objects.
In addition to these basic building blocks, the MATLAB parallel computing
environment also offers different types of arrays.

Nondistributed Arrays (p. 7-2) Standard arrays with no information
shared across labs

Distributed Arrays (p. 7-4) Distributed arrays: single arrays
spread across a number of labs

Nondistributed Arrays
When you create a nondistributed array, MATLAB constructs a separate array
in the workspace of each lab and assigns a common variable to them. Any
operation performed on that variable affects all individual arrays assigned
to it. If you display from lab 1 the value assigned to this variable, all labs
respond by showing the array of that name that resides in their workspace.

The state of a nondistributed array depends on the value of that array in the
workspace of each lab:

Replicated Arrays (p. 7-2)

Variant Arrays (p. 7-3)

Private Arrays (p. 7-4)

Replicated Arrays
A replicated array resides in the workspaces of all labs, and its size and
content are identical on all labs. When you create the array, MATLAB assigns
it to the same variable on all labs. If you display at the pmode prompt the
value assigned to this variable, all labs respond by showing the same array.

7-2

Array Types

P>> A = magic(3)

LAB 1 LAB 2 LAB 3 LAB 4
| | |

8 1 6 | 8 1 6 | 8 1 6 | 8 1 6
3 5 7 | 3 5 7 | 3 5 7 | 3 5 7
4 9 2 | 4 9 2 | 4 9 2 | 4 9 2

Variant Arrays
A variant array also resides in the workspaces of all labs, but its content
differs on one or more labs. When you create the array, MATLAB assigns
it to the same variable on all labs. If you display at the pmode prompt the
value assigned to this variable, all labs respond by showing their version
of the array.

P>> A = magic(3) + labindex-1

LAB 1 LAB 2 LAB 3 LAB 4
| | |

8 1 6 | 9 2 7 | 10 3 8 | 11 4 9
3 5 7 | 4 6 9 | 5 7 9 | 6 8 10
4 9 2 | 5 10 3 | 6 11 4 | 7 12 5

A replicated array can become a variant array when its value becomes unique
on each lab.

P>> B = magic(3) %replicated on all labs
P>> B = B + labindex %now a variant array, different on each lab

7-3

7 Parallel Math

Private Arrays
A private array is defined on one or more, but not all labs. You could create
this array by using the lab index in a conditional statement, as shown here:

P>> if labindex >= 3; A = magic(3) + labindex - 1; end

LAB 1 LAB 2 LAB 3 LAB 4
| | |

A is | A is | 10 3 8 | 11 4 9
undefined | undefined | 5 7 9 | 6 8 10

| 6 11 4 | 7 12 5

Distributed Arrays
With replicated and variant arrays, the full content of the array is stored
in the workspace of each lab. Distributed arrays, on the other hand, are
partitioned into segments, with each segment residing in the workspace of a
different lab. Each lab has its own array segment to work with. Reducing the
size of the array that each lab has to store and process means a more efficient
use of memory and faster processing, especially for large data sets.

This example distributes a 3-by-10 replicated array A over four labs. The
resulting array D is also 3-by-10 in size, but only a segment of the full array
resides on each lab.

P>> A = [11:20; 21:30; 31:40];
P>> D = distribute(A, 2)

LAB 1 LAB 2 LAB 3 LAB 4
| | |

11 12 13 | 14 15 16 | 17 18 | 19 20
21 22 23 | 24 25 26 | 27 28 | 29 30
31 32 33 | 34 35 36 | 37 38 | 39 40

For more details on using distributed arrays, see “Working with Distributed
Arrays” on page 7-5.

7-4

Working with Distributed Arrays

Working with Distributed Arrays
MATLAB provides several special and overloaded functions that specifically
let you work with distributed arrays. The following sections describe
distributed arrays and how to work with them:

• “How MATLAB Distributes Arrays” on page 7-5

• “Creating a Distributed Array” on page 7-7

• “Local Arrays” on page 7-10

• “Obtaining Information About the Array” on page 7-11

• “Changing the Dimension of Distribution” on page 7-13

• “Restoring the Full Array” on page 7-13

• “Indexing into a Distributed Array” on page 7-15

How MATLAB Distributes Arrays
When you distribute an array to a number of labs, MATLAB partitions the
array into segments and assigns one segment of the array to each lab. You
can partition a two-dimensional array horizontally, assigning columns of the
original array to the different labs, or vertically, by assigning rows. An array
with N dimensions can be partitioned along any of its N dimensions. You
choose which dimension of the array is to be partitioned by specifying it in the
array constructor command.

For example, to distribute an 80-by-1000 array to four labs, you can partition
it either by columns, giving each lab an 80-by-250 segment, or by rows, with
each lab getting a 20-by-1000 segment. If the array dimension does not divide
evenly over the number of labs, MATLAB partitions it as evenly as possible.

The following example creates an 80-by-1000 replicated array and assigns
it to variable A. In doing so, each lab creates an identical array in its own
workspace and assigns it to variable A, where A is local to that lab. The second
command distributes A, creating a single 80-by-1000 array D that spans all
four labs. lab 1 stores columns 1 through 250, lab 2 stores columns 251
through 500, and so on. The default distribution is by columns.

7-5

7 Parallel Math

A = zeros(80, 1000);
D = distribute(A)

1: local(D) is 80-by-250
2: local(D) is 80-by-250
3: local(D) is 80-by-250
4: local(D) is 80-by-250

Each lab has access to all segments of the array. Access to the local segment
is faster than to a remote segment, because the latter requires sending and
receiving data between labs and thus takes more time.

How MATLAB Displays a Distributed Array
MATLAB displays the local segments of a distributed array as follows for
lab 1 and lab 2. Each lab displays that part of the array that is stored in
its workspace. This part of the array is said to be local to that lab. The lab
index appears at the left.

1: local(D) =
1: 11 12
1: 21 22
1: 31 32
1: 41 42
2: local(D) =
2: 13 14
2: 23 24
2: 33 34
2: 43 44

When displaying larger distributed arrays, MATLAB prints out only the sizes
of the local segments.

1: local(D) is 4-by-250
2: local(D) is 4-by-250
3: local(D) is 4-by-250
4: local(D) is 4-by-250

7-6

Working with Distributed Arrays

Note When displayed, a distributed array can look the same as a smaller
variant array. For example, on a configuration with four labs, a 4-by-20
distributed array might appear to be the same size as a 4-by-5 variant
array because both are displayed as 4-by-5 in each lab window. You can
tell the difference either by finding the size of the array or by using the
isdistributed function.

How Much Is Distributed to Each Lab
In distributing an array of N rows, if N is evenly divisible by the number of
labs, MATLAB stores the same number of rows (N/numlabs) on each lab.
When this number is not evenly divisible by the number of labs, MATLAB
partitions the array as evenly as possible.

MATLAB provides a function called distributor that you can use to
determine the exact distribution of an array. See “Indexing Functions” on
page 7-15 for more information on dcolon.

Distribution of Other Data Types
You can distribute arrays of any MATLAB built-in data type, and also
numeric arrays that are complex or sparse, but not arrays of function handles
or object types.

Creating a Distributed Array
You can create a distributed array in any of the following ways:

• “Partitioning a Larger Array” on page 7-8 — Start with a large array that
is replicated on all labs, and partition it so that the pieces are distributed
across the labs. This is most useful when you have sufficient memory to
store the initial replicated array.

• “Building from Smaller Arrays” on page 7-9 — Start with smaller variant
or replicated arrays stored on each lab, and combine them so that each
array becomes a segment of a larger distributed array. This method saves
on memory as it lets you build a distributed array from smaller pieces.

7-7

7 Parallel Math

• “Using MATLAB Constructor Functions” on page 7-10 — Use any of the
MATLAB constructor functions like rand or zeros with the distributor()
argument. These functions offer a quick means of constructing a distributed
array of any size in just one step.

Partitioning a Larger Array
If you have a large array already in memory that you want MATLAB to
process more quickly, you can partition it into smaller segments and distribute
these segments to all of the labs using the distribute function. Each lab
then has an array that is a fraction the size of the original, thus reducing the
time required to access the data that is local to each lab.

As a simple example, the following line of code creates a 4-by-8 replicated
matrix on each lab assigned to variable A:

P>> A = [11:18; 21:28; 31:38; 41:48]
A =

11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 28
31 32 33 34 35 36 37 38
41 42 43 44 45 46 47 48

The next line uses the distribute function to construct a single 4-by-8 matrix
D that is distributed along the second dimension of the array:

P>> D = distribute(A, 2)
1: local(D) = | 2: local(D) = | 3: local(D) = | 4: local(D) =

11 12 | 13 14 | 15 16 | 17 18
21 22 | 23 24 | 25 26 | 27 28
31 32 | 33 34 | 35 36 | 37 38
41 42 | 43 44 | 45 46 | 47 48

Note that arrays A and D are the same size. Array A exists in its full size on
each lab, while only a segment of array D exists on each lab.

P>> whos
Name Size Bytes Class

A 4x8 256 double array
D 4x8 460 distributedarray object

7-8

Working with Distributed Arrays

See the distribute function reference page for syntax and usage information.

Building from Smaller Arrays
The distribute function is less useful when you are using distribution to
reduce the amount of memory required to store data. This is because you
have to first construct the full array and then partition it into distributed
segments. To save on memory, you can construct the smaller pieces on each
lab first, and then combine them into a single array that is distributed across
the labs using the darray function.

This example creates a 4-by-250 variant array A on each of four labs and
then uses darray to distribute these segments across four labs, creating a
4-by-1000 distributed array. Here is the variant array, A:

P>> A = [1:250; 251:500; 501:750; 751:1000] + 250 * (labindex - 1);

LAB 1 | LAB 2 LAB 3

1 2 ... 250 | 251 252 ... 500 | 501 502 ... 750 | etc.

251 252 ... 500 | 501 502 ... 750 | 751 752 ...1000 | etc.

501 502 ... 750 | 751 752 ...1000 | 1001 1002 ...1250 | etc.

751 752 ...1000 | 1001 1002 ...1250 | 1251 1252 ...1500 | etc.

| | |

Now combine these segments into an array that is distributed across the first
(or vertical) dimension. The array is now 16-by-250, with a 4-by-250 segment
residing on each lab:

P>> D = darray(A, 1)
1: local(D) is 4-by-250
2: local(D) is 4-by-250
3: local(D) is 4-by-250
4: local(D) is 4-by-250

P>> whos
Name Size Bytes Class

A 4x250 8000 double array
D 16x250 8396 distributedarray object

7-9

7 Parallel Math

You could also use replicated arrays in the same fashion, if you wanted to
create a distributed array whose segments were all identical to start with.
See the darray function reference page for syntax and usage information.

Using MATLAB Constructor Functions
MATLAB provides several array constructor functions that you can use to
build distributed arrays of specific values, sizes, and classes. These functions
operate in the same way as their nondistributed counterparts in the MATLAB
language, except that they distribute the resultant array across the labs using
the specified distributor dimension, dist.

Constructor Functions. The distributed constructor functions are listed
here. Use the dist object argument (created by the distributor function)
to specify over which dimension to distribute the array. See the individual
reference pages for these functions for further syntax and usage information.

cell(m, n, ..., dist)
eye(m, ..., classname, dist)
false(m, n, ..., dist)
Inf(m, n, ..., classname, dist)
NaN(m, n, ..., classname, dist)
ones(m, n, ..., classname, dist)
rand(m, n, ..., dist)
randn(m, n, ..., dist)
sparse(m, n, dist)
speye(m, ..., dist)
sprand(m, n, density, dist)
sprandn(m, n, density, dist)
true(m, n, ..., dist)
zeros(m, n, ..., classname, dist)

Local Arrays
That part of a distributed array that resides on each lab is a piece of a larger
array. Each lab can work on its own segment of the common array, or it can
make a copy of that segment in a variant or private array of its own. This
local copy of a distributed array segment is called a local array.

7-10

Working with Distributed Arrays

Creating Local Arrays from a Distributed Array
The local function copies the segments of a distributed array to a separate
variant array. This example makes a local copy L of each segment of
distributed array D. The size of L shows that it contains only the local part of D
for each lab. Suppose you distribute an array across four labs:

P>> A = [1:80; 81:160; 161:240];
P>> D = distribute(A, 2);

P>> size(D)
ans =

3 80

P>> L = local(D);
P>> size(L)
ans =

3 20

Each lab recognizes that the distributed array D is 3-by-80. However, notice
that the size of the local portion, L, is 3-by-20 on each lab, because the 80
columns of D are distributed over four labs.

Creating a Distributed from Local Arrays
Use the darray function to perform the reverse operation. This function,
described in “Building from Smaller Arrays” on page 7-9, combines the local
variant arrays into a single array distributed along the specified dimension.

Continuing the previous example, take the local variant arrays L and put
them together as segments of a new distributed array X.

P>> X = darray(L, 2);
P>> size(X)
ans =

3 80

Obtaining Information About the Array
MATLAB offers several functions that provide information on any particular
array. In addition to these standard functions, there are also two functions
that are useful solely with distributed arrays.

7-11

7 Parallel Math

Determining Whether an Array Is Distributed
The isdistributed function returns a logical 1 (true) if the input array is
distributed, and logical 0 (false) otherwise. The syntax is

P>> TF = isdistributed(D)

where D is any MATLAB array.

Determining the Dimension of Distribution
The distributor function returns a number that represents the dimension
of distribution of a distributed array, and a vector that describes how the
array is partitioned along its dimension of distribution. This function is not
valid on nondistributed arrays.

The syntax is

P>> distributor(D)

where D is any distributed array. For a 250-by-10 matrix distributed across
four labs by columns,

P>> D = ones(250, 10, distributor())
1: local(D) is 250-by-3
2: local(D) is 250-by-3
3: local(D) is 250-by-2
4: local(D) is 250-by-2

P>> v = distributor(D)
1: v =
1: distribdim: 2
1: partition: [3 3 2 2]

The distribdim of 2 means the array is distributed by columns (dimension
2); and the partition of [3 3 2 2] means that the first three columns reside
in the lab 1, the next three columns in lab 2, the next two columns in lab 3,
and the final two columns in lab 4.

Other Array Functions
Other functions that provide information about standard arrays also work on
distributed arrays and use the same syntax.

7-12

Working with Distributed Arrays

• ndims — Returns the number of dimensions.

• size — Returns the size of each dimension.

• length — Returns the length of a specific dimension.

• isa — Returns information about a number of array characteristics.

• is* — All functions that have names beginning with 'is', such as ischar
and issparse.

numel Not Supported on Distributed Arrays. For a distributed array, the
numel function does not return the number of elements, but instead always
returns a value of 1.

Changing the Dimension of Distribution
When constructing an array, you distribute the parts of the array along one of
the array’s dimensions. You can change the direction of this distribution on an
existing array using the redistribute function.

Construct an 8-by-16 distributed array D of random values having distributed
columns:

P>> D = rand(8, 16, distributor());

P>> size(local(D))
ans =

8 4

Create a new array from this one that has distributed rows:

P>> X = redistribute(D, 1);

P>> size(local(X))
ans =

2 16

Restoring the Full Array
You can restore a distributed array to its undistributed form using the gather
function. gather takes the segments of an array that reside on different labs
and combines them into a replicated array.

7-13

7 Parallel Math

Distribute a 4-by-10 array to four labs along the second dimension:

P>> A = [11:20; 21:30; 31:40; 41:50]
A =

11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

P>> D = distribute(A, 2)
Lab 1 | Lab 2 | Lab 3 | Lab 4

11 12 13 | 14 15 16 | 17 18 | 19 20
21 22 23 | 24 25 26 | 27 28 | 29 30
31 32 33 | 34 35 36 | 37 38 | 39 40
41 42 43 | 44 45 46 | 47 48 | 49 50

| | |
P>> size(local(D))

1: ans =
1: 4 3
2: ans =
2: 4 3
3: ans =
3: 4 2
4: ans =
4: 4 2

Restore the undistributed segments to the full array form by gathering the
segments:

P>> X = gather(D)
X =

11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

P>> size(X)
ans =

4 8

7-14

Working with Distributed Arrays

Indexing into a Distributed Array
While indexing into a nondistributed array is fairly straightforward,
distributed arrays require additional considerations. Each dimension of a
nondistributed array is indexed within a range of 1 to the final subscript,
which is represented in MATLAB by the end keyword. The length of any
dimension can be easily determined using either the size or length function.

With distributed arrays, these values are not so easily obtained. For example,
the second segment of an array (that which resides in the workspace of lab 2)
has a starting index that varies with each array. For a 200-by-1000 array that
has been distributed by columns over four labs, this starting index would be
251. For a 1000-by-200 array also distributed by columns, that same index
would be 51. As for the ending index, this is not given by using the end
keyword, as end in this case refers to the end of the entire array; that is,
the last subscript of the final segment. The length of each segment is also
not revealed by using the length or size functions, as they only return the
length of the entire array.

The MATLAB colon operator and end keyword are two of the basic tools
for indexing into nondistributed arrays. For distributed arrays, MATLAB
provides a distributed version of the colon operator, called dcolon. This
actually is a function, not a symbolic operator like colon.

Indexing Functions

dcolon. The dcolon function returns a distributed vector of length L
that maps the subscripts of an equivalent array residing on the same lab
configuration. An equivalent array is an array for which the distributed
dimension is also of length L. For example, the subscripts of a 50-element
dcolon vector are as follows:

[1:13] for Lab 1
[14:26] for Lab 2
[27:38] for Lab 3
[39:50] for Lab 4

This vector shows how MATLAB would distribute 50 rows, columns, or any
dimension of an array in a configuration having the same number of labs

7-15

7 Parallel Math

(four in this case). A 50-row, 10-column array, for example, with the rows
distributed over four labs

D = rand(50,10,distributor('distribdim',1))

will have rows 1 through 13 stored on lab 1, rows 14 through 26 on lab 2, rows
27 through 38 on lab 3, and rows 39 through 50 on lab 4.

The command syntax for dcolon is as follows. The step input argument is
optional:

P>> V = dcolon(first, step, last)

Inputs to dcolon are shown below. Each input must be a real scalar integer
value.

Input Argument Description

first Number of the first subscript in this dimension.

step Size of the interval between numbers in the generated
sequence. Optional; the default is 1.

last Number of the last subscript in this dimension.

To use dcolon to index into the 50-by-10 distributed array in the previous
example, first generate the vector V that shows how the 50-row dimension is
partitioned. Then you can use the elements of this vector to derive the range
of rows that apply to particular segments of the array.

7-16

Using a Parallel for-Loop (parfor)

Using a Parallel for-Loop (parfor)
If you already have an embarrassingly parallel task to perform, but you
do not want to bother with the overhead of defining jobs and tasks, you
can take advantage of the ease-of-use that the interactive parallel mode
provides. Where an existing program might take hours or days to process all
its independent data sets, you can shorten that time by distributing these
independent computations over your cluster.

results = zeros(1, numDataSets);
for i = 1:numDataSets

load(['\\central\myData\dataSet' int2str(i) '.mat'])
results(i) = processDataSet(i);

end
plot(1:numDataSets, results);
save \\central\myResults\today.mat results

The following changes make this code parallel-aware:

results = zeros(1, numDataSets, distributor());
parfor i = 1:numDataSets

load(['\\central\myData\dataSet' int2str(i) '.mat'])
results(i) = processDataSet(i);

end
res = gather(results, 1);
if labindex == 1

plot(1:numDataSets, res);
print -dtiff -r300 fig.tiff;
save \\central\myResults\today.mat res

end

Note that the length of the parfor iteration and the length of the distributed
array results need to match in order to index into results within a parfor
loop. This way, no communication is required between the labs. If results
was simply a replicated array, as it would have been when running the
original code in parallel, then each lab would have assigned into its part of
results, leaving the remaining parts of results 0. At the end, results would
have been a variant and without explicitly calling labSend and labReceive or
gcat, there would be no way to get the total results back to one (or all) labs.

7-17

7 Parallel Math

When using the load function, you need to be careful that the data files are
accessible to all labs if necessary. The best practice is to use explicit paths to
files on a shared file system.

Correspondingly, when using the save function, you should be careful to only
have one lab save to a particular file (on a shared file system) at a time. Thus,
wrapping the code in if labindex == 1 is recommended.

Because results is distributed across the labs, this example uses gather to
collect the data onto lab 1.

A lab cannot plot a visible figure, so the print function creates a viewable
file of the plot.

Distributed Arrays in a parfor Loop
When a parfor loop is executed in a parallel job, each lab performs its portion
of the loop, so that the labs are all working simultaneously. Because of this,
no communication is allowed between the labs while executing a parfor loop.
In particular, a lab has access only to its partition of a distributed array. Any
calculations that require a lab to access portions of a distributed array from
another lab will generate an error.

To illustrate this characteristic, you can try the following example, in which
one parfor loop works, but the other does not.

At the pmode prompt, create two distributed arrays, one an identity matrix,
the other set to zeros, distributed across four labs.

P>> D = eye(8,8,distributor())
P>> E = zeros(8,8,distributor())

By default, these arrays are distributed by columns; that is, each of the four
labs contains two columns of each array. If you use these arrays in a parfor
loop, any calculations must be self-contained within each lab. In other words,
you can only perform calculations that are limited within each lab to the two
columns of the arrays that the labs contain.

7-18

Using a Parallel for-Loop (parfor)

For example, suppose you want to set each column of array E to some multiple
of the corresponding column of array D:

parfor j = 1 : size(D,2), E(:,j) = j*D(:,j); end

This statement sets the j-th column of E to j times the j-th column of D. In
effect, while D is an identity matrix with 1s down the main diagonal, E has
the sequence 1, 2, 3, etc. down its main diagonal.

This works because each lab has access to the entire column of D and the
entire column of E necessary to perform the calculation, as each lab works
independently and simultaneously on 2 of the 8 columns.

Suppose, however, that you attempt to set the values of the columns of E
according to different columns of D:

parfor j = 1 : size(D,2), E(:,j) = j*D(:,j+1); end

This method fails, because when j is 2, you are trying to set the second
column of E using the third column of D. These columns are stored in different
labs, so an error occurs, indicating that communication between the labs is
not allowed.

7-19

7 Parallel Math

Using MATLAB Functions on Distributed Arrays
Many functions in MATLAB are enhanced so that they operate on distributed
arrays in much the same way that they operate on arrays contained in a
single workspace.

A few of these functions might exhibit certain limitations when operating on
a distributed array. To see if any function has different behavior when used
with a distributed array, type

help distributed/function_name

For example,

help distributed/normest

The following table lists the enhanced MATLAB functions that operate on
distributed arrays:

Type of Function Function Names

Data functions cumprod, cumsum, fft, max, min, prod, sum

Data type functions cast, cell2mat, cell2struct, celldisp, cellfun,
char, double, fieldnames, int16, int32, int64,
int8, logical, num2cell, rmfield, single,
struct2cell, swapbytes, typecast, uint16,
uint32, uint64, uint8

Elementary and
trigonometric
functions

abs, acos, acosd, acosh, acot, acotd, acoth,
acsc, acscd, acsch, angle, asec, asecd, asech,
asin, asind, asinh, atan, atan2, atand, atanh,
ceil, complex, conj, cos, cosd, cosh, cot, cotd,
coth, csc, cscd, csch, exp, expm1, fix, floor,
hypot, imag, isreal, log, log10, log1p, log2, mod,
nextpow2, nthroot, pow2, real, reallog, realpow,
realsqrt, rem, round, sec, secd, sech, sign, sin,
sind, sinh, sqrt, tan, tand, tanh

Elementary matrices cat, diag, eps, isempty, isequal,
isequalwithequalnans, isfinite, isinf,
isnan, length, ndims, size, tril, triu

7-20

Using MATLAB Functions on Distributed Arrays

Type of Function Function Names

Matrix functions chol, eig, lu, norm, normest, svd

Array operations all, and, any, bitand, bitor, bitxor, ctranspose,
end, eq, ge, gt, horzcat, ldivide, le, lt, minus,
mldivide, mrdivide, mtimes, ne, not, or, plus,
power, rdivide, subsasgn, subsref, times,
transpose, uminus, uplus, vertcat, xor

Sparse matrix
functions

full, issparse, nnz, nonzeros, nzmax, sparse,
spfun, spones

Special functions dot

7-21

7 Parallel Math

7-22

8

Functions — By Category

General Toolbox Functions (p. 8-2) Toolbox functions not specific to
particular object type

Job Manager Functions (p. 8-3) Operate on job manager object

Scheduler Functions (p. 8-3) Operate on various schedulers

Job Functions (p. 8-4) Operate on job object

Task Functions (p. 8-4) Operate on task object

Toolbox Functions Used in Parallel
Jobs and pmode (p. 8-4)

Execute within parallel job code

Toolbox Functions Used in MATLAB
Workers (p. 8-7)

Execute within MATLAB worker
session

8 Functions — By Category

General Toolbox Functions
clear Remove objects from MATLAB

workspace

dctconfig Configure settings for Distributed
Computing Toolbox client session

dfeval Evaluate function using cluster

dfevalasync Evaluate function asynchronously
using cluster

findResource Find available distributed computing
resources

get Object properties

help Help for toolbox functions in
Command Window

inspect Open Property Inspector

jobStartup M-file for user-defined options to run
when job starts

length Length of object array

methods List functions of object class

set Configure or display object properties

size Size of object array

taskFinish M-file for user-defined options to run
when task finishes

taskStartup M-file for user-defined options to run
when task starts

8-2

Job Manager Functions

Job Manager Functions
createJob Create job object in scheduler and

client

createParallelJob Create parallel job object

demote Demote job in job manager queue

findJob Find job objects stored in scheduler

pause Pause job manager queue

promote Promote job in job manager queue

resume Resume processing queue in job
manager

Scheduler Functions
createJob Create job object in scheduler and

client

createParallelJob Create parallel job object

getDebugLog Read output messages from job run
by supported third-party scheduler

mpiLibConf Location of MPI implementation

mpiSettings Configure options for MPI
communication

setupForParallelExecution Set options for submitting parallel
jobs on LSF

8-3

8 Functions — By Category

Job Functions
cancel Cancel task or job

createTask Create new task in job

destroy Remove job or task object from
parent and memory

findTask Task objects belonging to job object

getAllOutputArguments Output arguments from evaluation
of all tasks in job object

submit Queue job in scheduler

waitForState Wait for object to change state

Task Functions
cancel Cancel task or job

destroy Remove job or task object from
parent and memory

waitForState Wait for object to change state

Toolbox Functions Used in Parallel Jobs and pmode
cell Create distributed cell array

darray Create distributed array from local
data

dcolon Distributed colon operation

dcolonpartition Default partition for distributed
array

distribdim Distributed dimension of distributor

8-4

Toolbox Functions Used in Parallel Jobs and pmode

distribute Distribute replicated array

distributor Construct distributor object

eye Create distributed identity matrix

false Create distributed false array

gather Convert distributed array into
replicated array

gcat Global concatenation

gop Global operation across all labs

gplus Global addition

Inf Create distributed array of Inf
values

isdistributed True for distributed array

isreplicated True for replicated array

labBarrier Block execution until all labs reach
this call

labBroadcast Send data to all labs or receive data
sent to all labs

labindex Index of this lab

labProbe Test to see if messages are ready to
be received from other lab

labReceive Receive data from another lab

labSend Send data to another lab

labSendReceive Simultaneously send data to and
receive data from another lab

local Local portion of distributed array

localspan Index range of local segment of
distributed array

NaN Create distributed array of NaN
values

8-5

8 Functions — By Category

numlabs Total number of labs operating in
parallel on current job

ones Create distributed array of 1s

parfor Parallel for-loop

partition Partition of distributor

pload Load file into parallel session

pmode Interactive parallel mode

psave Save data from parallel job session

rand Create distributed array of uniformly
distributed pseudo-random numbers

randn Create distributed array of normally
distributed random values

redistribute Distribute array along different
dimension

sparse Create distributed sparse matrix

speye Create distributed sparse identity
matrix

sprand Create distributed sparse
array of uniformly distributed
pseudo-random values

sprandn Create distributed sparse array of
normally distributed random values

true Create distributed true array

zeros Create distributed array of 0s

8-6

Toolbox Functions Used in MATLAB Workers

Toolbox Functions Used in MATLAB Workers
getCurrentJob Job object whose task is currently

being evaluated

getCurrentJobmanager Job manager object that distributed
current task

getCurrentTask Task object currently being
evaluated in this worker session

getCurrentWorker Worker object currently running this
session

getFileDependencyDir Directory where FileDependencies
are written on worker machine

8-7

8 Functions — By Category

8-8

9

Functions — Alphabetical
List

cancel

Purpose Cancel task or job

Syntax cancel(t)
cancel(j)

Arguments t Pending or running task to cancel.

j Pending, running, or queued job to cancel.

Description cancel(t) stops the task object, t, that is currently in the pending or
running state. The task’s State property is set to finished, and no
output arguments are returned. An error message stating that the task
was canceled is placed in the task object’s ErrorMessage property, and
the worker session running the task is restarted.

cancel(j) stops the job object, j, that is pending, queued, or running.
The job’s State property is set to finished, and a cancel is executed
on all tasks in the job that are not in the finished state. A job object
that has been canceled cannot be started again.

If the job is running in a job manager, any worker sessions that are
evaluating tasks belonging to the job object will be restarted.

Examples Cancel a task. Note afterward the task’s State, ErrorMessage, and
OutputArguments properties.

job1 = createJob(jm);

t = createTask(job1, @rand, 1, {3,3});

cancel(t)

get(t)

ID: 1

Function: @rand

NumberOfOutputArguments: 1

InputArguments: {[3] [3]}

OutputArguments: {1x0 cell}

CaptureCommandWindowOutput: 0

CommandWindowOutput: ''

9-2

cancel

State: 'finished'

ErrorMessage: 'Task cancelled by user'

ErrorIdentifier: 'distcomp:task:Cancelled'

Timeout: Inf

CreateTime: 'Fri Oct 22 11:38:39 EDT 2004'

StartTime: 'Fri Oct 22 11:38:46 EDT 2004'

FinishTime: 'Fri Oct 22 11:38:46 EDT 2004'

Worker: []

Parent: [1x1 distcomp.job]

UserData: []

RunningFcn: []

FinishedFcn: []

See Also destroy, submit

9-3

cell

Purpose Create distributed cell array

Syntax D = cell(n, dist)
D = cell(m, n, p, ..., dist)
D = cell([m, n, p, ...], dist)

Description D = cell(n, dist) creates an n-by-n distributed array of
underlying class cell. D is distributed by dimension dim, where
dim = distribdim(dist), and with partition PAR, where PAR =
partition(dist). If dim is unspecified, D is distributed by its second
dimension. If PAR is unspecified, then D uses dcolonpartition(n) as
its partition. The easiest way to do this is to use a default distributor
where both dim and PAR are unspecified (dist = distributor()) as
input to cell.

D = cell(m, n, p, ..., dist) and D = cell([m, n, p, ...],
dist) create an m-by-n-by-p-by-... distributed array of underlying class
cell. The distribution dimension dim and partition PAR can be specified
by dist as above, but if they are not specified, dim is taken to be the last
nonsingleton dimension of D, and PAR is provided by dcolonpartition
over the size in that dimension.

Examples With four labs,

D = cell(1000,distributor())

creates a 1000-by-1000 distributed cell array D, distributed by its second
dimension (columns). Each lab contains a 1000-by-250 local piece of D.

D = cell(10, 10, distributor('partition', 1:numlabs))

creates a 10-by-10 distributed cell array D, distributed by its columns.
Each lab contains a 10-by-labindex local piece of D.

See Also cell MATLAB function reference page

eye, false, Inf, NaN, ones, rand, randn, sparse, speye, sprand,
sprandn, true, zeros

9-4

clear

Purpose Remove objects from MATLAB workspace

Syntax clear obj

Arguments obj An object or an array of objects.

Description clear obj removes obj from the MATLAB workspace.

Remarks If obj references an object in the job manager, it is cleared from the
workspace, but it remains in the job manager. You can restore obj to
the workspace with the findResource, findJob, or findTask function;
or with the Jobs or Tasks property.

Examples This example creates two job objects on the job manager jm. The
variables for these job objects in the MATLAB workspace are job1 and
job2. job1 is copied to a new variable, job1copy; then job1 and job2
are cleared from the MATLAB workspace. The job objects are then
restored to the workspace from the job object’s Jobs property as j1
and j2, and the first job in the job manager is shown to be identical to
job1copy, while the second job is not.

job1 = createJob(jm);
job2 = createJob(jm);
job1copy = job1;
clear job1 job2;
j1 = jm.Jobs(1);
j2 = jm.Jobs(2);
isequal (job1copy, j1)
ans =

1
isequal (job1copy, j2)
ans =

0

See Also createJob, createTask, findJob, findResource, findTask

9-5

createJob

Purpose Create job object in scheduler and client

Syntax obj = createJob(scheduler)
obj = createJob(..., 'p1', v1, 'p2', v2, ...)
obj = createJob(..., 'configuration', 'ConfigurationName',

...)

Arguments obj The job object.

scheduler The job manager object representing the job
manager service that will execute the job, or the
scheduler object representing the scheduler on the
cluster that will distribute the job.

p1, p2 Object properties configured at object creation.

v1, v2 Initial values for corresponding object properties.

Description obj = createJob(scheduler) creates a job object at the data location
for the identified scheduler, or in the job manager.

obj = createJob(..., 'p1', v1, 'p2', v2, ...) creates a job
object with the specified property values. If an invalid property name or
property value is specified, the object will not be created.

Note that the property value pairs can be in any format supported by the
set function, i.e., param-value string pairs, structures, and param-value
cell array pairs. If a structure is used, the structure field names are job
object property names and the field values specify the property values.

If you are using a third-party scheduler instead of a job manager,
the job’s data is stored in the location specified by the scheduler’s
DataLocation property.

obj = createJob(..., 'configuration', 'ConfigurationName',
...) creates a job object with the property values specified in the
configuration ConfigurationName. Configurations are defined in the
file distcompUserConfig.m. For details about writing and applying

9-6

createJob

configurations, see “Programming with User Configurations” on page
2-5.

Examples Construct a job object.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

obj = createJob(jm, 'Name', 'testjob');

Add tasks to the job.

for i = 1:10
createTask(obj, @rand, 1, {10});

end

Run the job.

submit(obj);

Retrieve job results.

out = getAllOutputArguments(obj);

Display the random matrix.

disp(out{1}{1});

Destroy the job.

destroy(obj);

See Also createParallelJob, createTask, findJob, findResource, submit

9-7

createParallelJob

Purpose Create parallel job object

Syntax pjob = createParallelJob(scheduler)
pjob = createParallelJob(..., 'p1', v1, 'p2', v2, ...)
pjob = createParallelJob(..., 'configuration',

'ConfigurationName',...)

Arguments pjob The parallel job object.

scheduler The scheduler object created by findResource,
using either a job manager or mpiexec scheduler.

p1, p2 Object properties configured at object creation.

v1, v2 Initial values for corresponding object properties.

Description pjob = createParallelJob(scheduler) creates a parallel job object
at the data location for the identified scheduler, or in the job manager.
Future modifications to the job object result in a remote call to the job
manager or modification to data at the scheduler’s data location.

pjob = createParallelJob(..., 'p1', v1, 'p2', v2, ...)
creates a parallel job object with the specified property values. If an
invalid property name or property value is specified, the object will
not be created.

Property value pairs can be in any format supported by the set function,
i.e., param-value string pairs, structures, and param-value cell array
pairs.

pjob = createParallelJob(..., 'configuration',
'ConfigurationName',...) creates a parallel job object with the
property values specified in the configuration ConfigurationName.
Configurations are defined in the file distcompUserConfig.m. For
details about writing and applying configurations, see “Programming
with User Configurations” on page 2-5.

9-8

createParallelJob

Examples Construct a parallel job object in a job manager queue.

jm = findResource('scheduler','type','jobmanager');
pjob = createParallelJob(jm,'Name','testparalleljob');

Add the task to the job.

createTask(pjob, 'rand', 1, {3});

Set the number of workers required for parallel execution.

set(pjob,'MinimumNumberOfWorkers',3);
set(pjob,'MaximumNumberOfWorkers',3);

Run the job.

submit(pjob);

Retrieve job results.

waitForState(pjob);
out = getAllOutputArguments(pjob);

Display the random matrices.

celldisp(out);
out{1} =

0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

out{2} =
0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

out{3} =
0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

9-9

createParallelJob

Destroy the job.

destroy(pjob);

See Also createJob, createTask, findJob, findResource, submit

9-10

createTask

Purpose Create new task in job

Syntax obj = createTask(j, functionhandle, numoutputargs, inputargs)
obj = createTask(..., 'p1',v1,'p2',v2,...)
obj = createTask(..., 'configuration', 'ConfigurationName',

...)

Arguments j The job that the task object is created in.

functionhandle A handle to the function that is called when
the task is evaluated.

numoutputargs The number of output arguments to be
returned from execution of the task function.

inputargs A row cell array specifying the input
arguments to be passed to the function
functionhandle. Each element in the cell
array will be passed as a separate input
argument.

p1, p2 Task object properties configured at object
creation.

v1, v2 Initial values for corresponding task object
properties.

Description obj = createTask(j, functionhandle, numoutputargs,
inputargs) creates a new task object in job j, and returns a reference,
obj, to the added task object.

obj = createTask(..., 'p1',v1,'p2',v2,...) adds a task object
with the specified property values. If an invalid property name or
property value is specified, the object will not be created.

Note that the property value pairs can be in any format supported
by the set function, i.e., param-value string pairs, structures, and
param-value cell array pairs. If a structure is used, the structure field

9-11

createTask

names are task object property names and the field values specify the
property values.
obj = createTask(..., 'configuration',
'ConfigurationName', ...)

creates a task job object with the property values specified in the
configuration ConfigurationName. Configurations are defined in the
file distcompUserConfig.m. For details about writing and applying
configurations, see “Programming with User Configurations” on page
2-5.

Examples Create a job object.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);

Add a task object to be evaluated that generates a 10-by-10 random
matrix.

obj = createTask(j, @rand, 1, {10,10});

Run the job.

submit(j);

Get the output from the task evaluation.

taskoutput = get(obj, 'OutputArguments');

Show the 10-by-10 random matrix.

disp(taskoutput{1});

See Also createJob

9-12

darray

Purpose Create distributed array from local data

Syntax D = darray(L)
D = darray(L,dim)
D = darray(L,dist)

Description D = darray(L) forms a distributed array with local(D) = L. The
distribution is determined by comparing SZL = size(L) across the
various labs. SZL must be the same on all labs, except possibly for one
index, dim, which becomes the distribution index. Note that SZL need
not be the same length on all labs, so the SZLs are padded with tailing
1s to match in length on all the labs. If SZL is the same on all labs,
then dim is ndims(L). The distributed array D is created as if you had
concatenated all the Ls from the labs along dimension dim. D satisfies:

SIZE(D) = [SZL(1:DIM-1) GPLUS(SZL(DIM)) SZL(DIM+1:END)]
DISTRIBDIM(DISTRIBUTOR(D)) = DIM
PARTITION(DISTRIBUTOR(D)) = GCAT(SZL(DIM)).

D = darray(L,dim) forms a distributed array with the distribution
index equal to dim. SZL = size(L) must be the same on all labs, except
possibly for SZL(dim). Unless you are working on only one lab, dim may
be greater than gop(@max,ndims(L)).

D = darray(L,dist) forms a distributed array with the specified
distributor dist. dist should specify both distribution dimension and
partition, but if it does not then they are deduced from SZL = size(L)
on all the labs, in the same way as in D = darray(L).

Examples With four labs

L = rand(2, labindex, 4);
D = darray(L);

creates a 2-by-10-by-4 array D with distribution dimension 2 and
partition [1 2 3 4].

9-13

darray

if labindex == 3, L = pi, else, L = zeros(1,0), end
D = darray(L)

creates a scalar distributed array D where the distribution dimension is
2 and the partition is [0 0 1 0]. Note, size(L,1) is 1 on all labs.

L = magic(4) + labindex;
dim = 1;
D = darray(L, dim);

creates a 16-by-4 array D distributed by rows (over its first dimension)
with an even partition. The second input dim is required here to override
the default, since size(L) was the same on all labs for all indices.

See Also distribdim, distribute, distributor, local, partition,
redistribute

9-14

dcolon

Purpose Distributed colon operation

Syntax dcolon(a,d,b)
dcolon(a,b)

Description dcolon is the basis for parallel for-loops and the default distribution of
distributed arrays.

dcolon(a,d,b) partitions the vector a:d:b into numlabs contiguous
subvectors of equal, or nearly equal length, and creates a distributed
array whose local portion on each lab is the labindex-th subvector.

dcolon(a,b) uses d = 1.

Examples Partition the vector 1:10 into four subvectors among four labs.

P>> C=dcolon(1,10)
1: 1: local(C) =
1: 1 2 3
2: 2: local(C) =
2: 4 5 6
3: 3: local(C) =
3: 7 8
4: 4: local(C) =
4: 9 10

See Also colon MATLAB function reference page

darray, dcolonpartition, distributor, localspan, parfor,
partition

9-15

dcolonpartition

Purpose Default partition for distributed array

Syntax P = dcolonpartition(n)

Description P = dcolonpartition(n) is a vector with sum(P) = n and length(P)
= numlabs. The first rem(n,numlabs) elements of P are equal
to ceil(n/numlabs) and the remaining elements are equal to
floor(n/numlabs). This function is the basis for the default
distribution of distributed arrays.

Examples If numlabs = 4,

P>> P = dcolonpartition(10)
1: P =
1: 3 3 2 2
2: P =
2: 3 3 2 2
3: P =
3: 3 3 2 2
4: P =
4: 3 3 2 2

See Also darray, dcolon, distribute, localspan, partition

9-16

dctconfig

Purpose Configure settings for Distributed Computing Toolbox client session

Syntax dctconfig('p1', v1, ...)
config = dctconfig('p1', v1, ...)
config = dctconfig()

Arguments p1 Property to configure. Supported properties are
'port', 'hostname', and 'pmodeport'.

v1 Value for corresponding property.

config Structure of configuration value.

Description dctconfig('p1', v1, ...) sets the client configuration property p1
with the value v1.

Note that the property value pairs can be in any format supported by the
set function, i.e., param-value string pairs, structures, and param-value
cell array pairs. If a structure is used, the structure field names are the
property names and the field values specify the property values.

If the property is 'port', the specified value is used to set the port
for the client session of the Distributed Computing Toolbox. This is
useful in environments where the choice of ports is limited. By default,
the client session searches for an available port to communicate with
the other sessions of the MATLAB Distributed Computing Engine.
In networks where you are required to use specific ports, you use
dctconfig to set the client’s port.

If the property is 'hostname', the specified value is used to set the
hostname for the client session of the Distributed Computing Toolbox.
This is useful when the client computer is known by more than one
hostname. The value you should use is the hostname by which the
cluster nodes can contact the client computer.

If the property is 'pmodeport', the specified value is used to set the
port for communications with the labs in a pmode session.

9-17

dctconfig

config = dctconfig('p1', v1, ...) returns a structure to config.
The field names of the structure reflect the property names, while the
field values are set to the property values.

config = dctconfig(), without any input arguments, returns all the
current values as a structure to config. If you have not set any values,
these are the defaults.

Examples View the current settings for hostname and ports.

config = dctconfig()
config =

port: 27370
hostname: 'machine32'

pmodeport: 27371

Set the current client session port number to 21000 with hostname fdm4.

dctconfig('hostname', 'fdm4', 'port', 21000');

9-18

demote

Purpose Demote job in job manager queue

Syntax demote(jm, job)

Arguments jm The job manager object that contains the job.

job Job object demoted in the job queue.

Description demote(jm, job) demotes the job object job that is queued in the job
manager jm.

If job is not the last job in the queue, demote exchanges the position
of job and the job that follows it in the queue.

See Also createJob, findJob, promote, submit

9-19

destroy

Purpose Remove job or task object from parent and memory

Syntax destroy(obj)

Arguments obj Job or task object deleted from memory.

Description destroy(obj) removes the job object reference or task object reference
obj from the local session, and removes the object from the job manager
memory. When obj is destroyed, it becomes an invalid object. You can
remove an invalid object from the workspace with the clear command.

If multiple references to an object exist in the workspace, destroying
one reference to that object invalidates all the remaining references to
it. You should remove these remaining references from the workspace
with the clear command.

The task objects contained in a job will also be destroyed when a job
object is destroyed. This means that any references to those task objects
will also be invalid.

Remarks Because its data is lost when you destroy an object, destroy should be
used after output data has been retrieved from a job object.

Examples Destroy a job and its tasks.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm, 'Name', 'myjob');
t = createTask(j, @rand, 1, {10});
destroy(j);
clear t
clear j

Note that task t is also destroyed as part of job j.

See Also createJob, createTask

9-20

dfeval

Purpose Evaluate function using cluster

Syntax [y1,...,ym] = dfeval(F, x1,...,xn)
y = dfeval(..., 'P1',V1,'P2',V2,...)
[y1,...,ym] = dfeval(F, x1,...,xn, ... 'configuration',

'ConfigurationName',...)

Arguments F Function name, function handle, or cell array
of function names or handles.

x1, ..., xn Cell arrays of input arguments to the functions.

y1, ..., ym Cell arrays of output arguments; each element
of a cell array corresponds to each task of the
job.

'P1', V1, 'P2',
V2, ...

Property name/property value pairs for the
created job object; can be name/value pairs or
structures.

Description [y1,...,ym] = dfeval(F, x1,...,xn) performs the equivalent of
an feval in a cluster of machines using the Distributed Computing
Toolbox. dfeval evaluates the function F, with arguments provided
in the cell arrays x1,...,xn. F can be a function handle, a function
name, or a cell array of function handles/function names where the
length of the cell array is equal to the number of tasks to be executed.
x1,...,xn are the inputs to the function F, specified as cell arrays in
which the number of elements in the cell array equals the number of
tasks to be executed. The first task evaluates function F using the first
element of each cell array as input arguments; the second task uses the
second element of each cell array, and so on. The sizes of x1,...,xn
must all be the same.

The results are returned to y1,...,ym, which are column-based cell
arrays, each of whose elements corresponds to each task that was
created. The number of cell arrays (m) is equal to the number of output
arguments returned from each task. For example, if the job has 10

9-21

dfeval

tasks that each generate three output arguments, the results of dfeval
will be three cell arrays of 10 elements each.

y = dfeval(..., 'P1',V1,'P2',V2,...) accepts additional
arguments for configuring different properties associated with the job.
Valid properties and property values are

• Job object property value pairs, specified as name/value pairs or
structures. (Properties of other object types, such as scheduler, task,
or worker objects are not permitted. Use a configuration to set
scheduler and task properties.)

• 'JobManager','JobManagerName'. This specifies the job manager
on which to run the job. If you do not use this property to specify a
job manager, the default is to run the job on the first job manager
returned by findResource.

• 'LookupURL','host:port'. This makes a unicast call to the job
manager lookup service at the specified host and port. The job
managers available for this job are those accessible from this lookup
service. For more detail, see the description of this option on the
findResource reference page.

• 'StopOnError',true|{false}. You may also set the value to logical
1 (true) or 0 (false). If true (1), any error that occurs during
execution in the cluster will cause the job to stop executing. The
default value is 0 (false), which means that any errors that occur
will produce a warning but will not stop function execution.

[y1,...,ym] = dfeval(F, x1,...,xn, ... 'configuration',
'ConfigurationName',...) evaluates the function F in a
cluster by using all the properties defined in the configuration
ConfigurationName. The configuration settings are used to find and
initialize a scheduler, create a job, and create tasks. Configurations
are defined in the file distcompUserConfig.m. For details about
writing and applying configurations, see “Programming with User
Configurations” on page 2-5. Note that configurations enable you to use
dfeval with any type of scheduler.

9-22

dfeval

Note that dfeval runs synchronously (sync); that is, it does not return
the MATLAB prompt until the job is completed. For further discussion
of the usage of dfeval, see “Evaluating Functions Synchronously” on
page 3-2.

Examples Create three tasks that return a 1-by-1, a 2-by-2, and a 3-by-3 random
matrix.

y = dfeval(@rand,{1 2 3})
y =

[0.9501]
[2x2 double]
[3x3 double]

Create two tasks that return random matrices of size 2-by-3 and 1-by-4.

y = dfeval(@rand,{2 1},{3 4});
y{1}
ans =

0.8132 0.1389 0.1987
0.0099 0.2028 0.6038

y{2}
ans =

0.6154 0.9218 0.1763 0.9355

Create two tasks, where the first task creates a 1-by-2 random array
and the second task creates a 3-by-4 array of zeros.

y = dfeval({@rand @zeros},{1 3},{2 4});
y{1}
ans =

0.0579 0.3529
y{2}
ans =

0 0 0 0
0 0 0 0
0 0 0 0

9-23

dfeval

Create five random 2-by-4 matrices using MyJobManager to execute
tasks, where the tasks time out after 10 seconds, and the function will
stop if an error occurs while any of the tasks are executing.

y = dfeval(@rand,{2 2 2 2 2},{4 4 4 4 4}, ...
'JobManager','MyJobManager','Timeout',10,'StopOnError',true);

See Also dfevalasync, feval, findResource

9-24

dfevalasync

Purpose Evaluate function asynchronously using cluster

Syntax Job = dfevalasync(F, numArgOut, x1,...,xn, 'P1',V1,'P2',V2,
...)

Job = dfeval(F, numArgOut, x1,...,xn, ... 'configuration',
'ConfigurationName',...)

Arguments Job Job object created to evaluation the
function.

F Function name, function handle, or cell
array of function names or handles.

numArgOut Number of output arguments from each
task’s execution of function F.

x1, ..., xn Cell arrays of input arguments to the
functions.

'P1', V1, 'P2',
V2,...

Property name/property value pairs for the
created job object; can be name/value pairs
or structures.

Description Job = dfevalasync(F, numArgOut, x1,...,xn,
'P1',V1,'P2',V2,...) is equivalent to dfeval, except that
it runs asynchronously (async), returning to the prompt immediately
with a single output argument containing the job object that it has
created and sent to the cluster. You have immediate access to the
job object before the job is completed. You can use waitForState to
determine when the job is completed, and getAllOutputArguments to
retrieve your results.

Job = dfeval(F, numArgOut, x1,...,xn, ... 'configuration',
'ConfigurationName',...) evaluates the function F in a
cluster by using all the properties defined in the configuration
ConfigurationName. The configuration settings are used to find and
initialize a scheduler, create a job, and create tasks. Configurations
are defined in the file distcompUserConfig.m. For details about

9-25

dfevalasync

writing and applying configurations, see “Programming with User
Configurations” on page 2-5. Note that configurations enable you to use
dfeval with any type of scheduler.

For further discussion on the usage of dfevalasync, see “Evaluating
Functions Asynchronously” on page 3-8.

Examples Execute a sum function distributed in three tasks.

job = dfevalasync(@sum,1,{[1,2],[3,4],[5,6]}, ...
'jobmanager','MyJobManager');

When the job is finished, you can obtain the results associated with
the job.

waitForState(job);
data = getAllOutputArguments(job)
data =

[3]
[7]
[11]

data is an M-by-numArgOut cell array, where M is the number of tasks.

See Also dfeval, feval, getAllOutputArguments, waitForState

9-26

distribdim

Purpose Distributed dimension of distributor

Syntax dim = distribdim(dist)

Description dim = distribdim(dist) returns the distribution dimension of a
distributor. If dim is -1, the distribution dimension is unspecified.

Examples distribdim(distributor('distribdim', dim))

returns dim.

See Also distributor, localspan, partition

9-27

distribute

Purpose Distribute replicated array

Syntax D = distribute(X)
D = distribute(X, dim)
D = distribute(X, dist)

Description D = distribute(X) distributes X on its last nonsingleton dimension
using the default dcolon-based distributor. X must be a replicated
array, namely it must have the same value on all labs. size(D) is the
same as size(X).

D = distribute(X, dim) distributes X over dimension dim. dim must
be between 1 and ndims(X).

D = distribute(X, dist) for distributor dist distributes X
accordingly. dist should specify distribution dimension (dim) and
partition (PAR); but if it does not, dim is taken to be the last nonsingleton
dimension and PAR is taken to be dcolonpartition(size(X, dim)).

If X is a replicated array, X = gather(distribute(X)) returns the
original replicated array, X.

Using distribute on a replicated array is not the most memory-efficient
way of creating a distributed array. Use the darray or the zeros(m, n,
..., dist) family of functions instead.

Remarks distribute is intended for use only with replicated arrays that are
identical on all labs. A function such as rand generates a different
(variant) array on each lab.

gather essentially performs the inverse of distribute.

Examples D = distribute(magic(numlabs));
D = distribute(cat(3, pascal(4), hilb(4), magic(4), eye(4)), 3);

See Also darray, dcolonpartition, distributor, gather

9-28

distributor

Purpose Construct distributor object

Syntax dist = distributor(D)
dist = distributor()
dist = distributor(dim)
dist = distributor(dim, PAR)

Description A distributor describes how the local pieces of a distributed array are
laid out across the labs. Arrays are distributed along a distribution
dimension dim, and the partition PAR describes the size of the local
pieces in that dimension. Distributors can be used as inputs to darray,
distribute, redistribute and the zeros/ones/rand family of functions
for creating distributed arrays.

dist = distributor(D) returns the distributor of a distributed array
D, indicating how that array is distributed.

dist = distributor() creates a default distributor dist particularly
for use with the zeros/ones/rand family of functions for creating
distributed arrays. The default is to distribute over the last nonsingleton
dimension with a partition specified by dcolonpartition.

dist = distributor(dim) returns a distributor dist that can be used
to specify the distribution dimension dim when creating a distributed
array.

dist = distributor(dim, PAR) returns a distributor dist that can be
used to also specify the partition PAR along the distribution dimension
when creating a distributed array.

Examples With four labs, create a default distributor dist.

dist = distributor();

Use the distributor dist to create a 12-by-10 distributed identity
matrix D.

D = eye(12, 10, dist);

9-29

distributor

Confirm that D is distributed by columns (dim = 2) with the default
dcolonpartition of [3 3 2 2] as its partition.

distD = distributor(D)

Create a new distributor, distD1, for an array distributed by rows
(dim = 1), with partition [2 3 4 3].

distD1 = distributor(1, [2 3 4 3])

Create D1 by redistributing D according to the new distributor distD1.

D1 = redistribute(D, distD1)

See Also darray, dcolonpartition, distribdim, distribute, localspan, ones,
partition, redistribute, zeros

9-30

eye

Purpose Create distributed identity matrix

Syntax D = eye(n, dist)
D = eye(m, n, dist)
D = eye([m, n], dist)
D = eye(..., classname, dist)

Description D = eye(n, dist) creates an n-by-n distributed array of underlying
class double. D is distributed by dimension dim, where dim
= distribdim(dist), and with partition PAR, where PAR =
partition(dist). If dim is unspecified, then D is distributed
by its second dimension. If PAR is unspecified, then D uses
dcolonpartition(n) as its partition. The easiest way to do this is to
use a default distributor where both dim and PAR are unspecified (dist
= distributor()) as input to eye.

D = eye(m, n, dist) and D = eye([m, n], dist) create an m-by-n
distributed array of underlying class double. The distribution dimension
dim and partition PAR can be specified by dist as above, but if they are
not specified, dim is taken to be the last nonsingleton dimension of D, and
PAR is provided by dcolonpartition over the size in that dimension.

D = eye(..., classname, dist) optionally specifies the class of the
distributed array D. Valid choices are the same as for the regular eye
function: 'double' (the default), 'single', 'int8', 'uint8', 'int16',
'uint16', 'int32', 'uint32', 'int64', and 'uint64'.

Examples With four labs,

D = eye(1000, distributor())

creates a 1000-by-1000 distributed double array D, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of D.

D = eye(10, 10, 'uint16', distributor('partition', 1:numlabs))

9-31

eye

creates a 10-by-10 distributed uint16 array D, distributed by its
columns. Each lab contains a 10-by-labindex local piece of D.

See Also eye MATLAB function reference page

cell, false, Inf, NaN, ones, rand, randn, sparse, speye, sprand,
sprandn, true, zeros

9-32

false

Purpose Create distributed false array

Syntax F = false(n, dist)
F = false(m, n, dist)
F = false([m, n], dist)

Description F = false(n, dist) creates an n-by-n distributed array of
underlying class logical. F is distributed by dimension dim, where
dim = distribdim(dist), and with partition PAR, where PAR
= partition(dist). If dim is unspecified, then F is distributed
by its second dimension. If PAR is unspecified, then F uses
dcolonpartition(n) as its partition. The easiest way to do this is to
use a default distributor where both dim and PAR are unspecified (dist
= distributor()) as input to false.

F = false(m, n, dist) and F = false([m, n], dist) create an
m-by-n distributed array of underlying class logical. The distribution
dimension dim and partition PAR can be specified by dist as above,
but if they are not specified, dim is taken to be the last nonsingleton
dimension of F, and PAR is provided by dcolonpartition over the size
in that dimension.

Examples With four labs,

F = false(1000, distributor())

creates a 1000-by-1000 distributed double array F, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of F.

F = false(10, 10, distributor('partition', 1:numlabs))

creates a 10-by-10 distributed logical array F, distributed by its columns.
Each lab contains a 10-by-labindex local piece of F.

9-33

false

See Also false MATLAB function reference page

cell, eye, Inf, NaN, ones, rand, randn, sparse, speye, sprand,
sprandn, true, zeros

9-34

findJob

Purpose Find job objects stored in scheduler

Syntax out = findJob(jm)
[pending queued running finished] = findJob(jm)
out = findJob(jm,'p1',v1,'p2',v2,...)

Arguments jm Scheduler object in which to find the job.

pending Array of jobs in scheduler jm whose State is
pending.

queued Array of jobs in scheduler jm whose State
is queued.

running Array of jobs in scheduler jm whose State is
running.

finished Array of jobs in scheduler jm whose State
is finished.

out Array of jobs found in scheduler jm.

p1, p2 Job object properties to match.

v1, v2 Values for corresponding object properties.

Description out = findJob(jm) returns an array, out, of all job objects stored in the
scheduler jm. Jobs in the array will be ordered by State in the following
order: 'pending', 'queued', 'running', 'finished'; within the
'queued' state, jobs are listed in the order in which they are queued.

[pending queued running finished] = findJob(jm) returns arrays
of all job objects stored in the scheduler jm, by state. Jobs in the array
queued will be in the order in which they are queued, with the job at
queued(1) being the next to execute.

out = findJob(jm,'p1',v1,'p2',v2,...) returns an array, out, of
job objects whose property names and property values match those
passed as parameter-value pairs, p1, v1, p2, v2.

9-35

findJob

Note that the property value pairs can be in any format supported
by the set function, i.e., param-value string pairs, structures, and
param-value cell array pairs. If a structure is used, the structure
field names are job object property names and the field values are the
appropriate property values to match.

Jobs in the queued state are returned in the same order as they appear
in the job queue service.

When a property value is specified, it must use the same exact value
that the get function returns, including letter case. For example, if get
returns the Name property value as MyJob, then findJob will not find
that object while searching for a Name property value of myjob.

See Also createJob, findResource, findTask, submit

9-36

findResource

Purpose Find available distributed computing resources

Syntax out = findResource('scheduler','type','SchedType')
out = findResource('scheduler','type','jobmanager', ...

'LookupURL','host:port')
out = findResource('scheduler','type','SchedType', ...,

'p1', v1, 'p2', v2,...)
out = findResource('scheduler', ...

'configuration', 'ConfigurationName')
out = findResource('worker')
out = findResource('worker','LookupURL','host:port')
out = findResource('worker', ..., 'p1', v1, 'p2', v2,...)

Arguments out Object or array of objects returned.

'scheduler' Literal string specifying that you are finding
a scheduler, which can be a job manager or a
third-party scheduler.

'SchedType' Specifies the type of scheduler: 'jobmanager',
'ccs', 'LSF', 'mpiexec', or any string that
starts with 'generic'.

'worker' Literal string specifying that you are finding
a worker.

'LookupURL' Literal string to indicate usage of a remote
lookup service.

'host:port' Host name and (optionally) port of remote
lookup service to use.

p1, p2 Object properties to match.

v1, v2 Values for corresponding object properties.

9-37

findResource

'configuration' Literal string to indicate usage of a
configuration.

'ConfigurationName' Name of configuration to use, defined in
distcompUserConfig.m.

Description out = findResource('scheduler','type','SchedType') out =
findResource('worker') return an array, out, containing objects
representing all available distributed computing schedulers of the
given type, or workers. SchedType can be 'jobmanager', 'ccs',
'LSF', 'mpiexec', or any string starting with 'generic'. You can
use different scheduler types starting with 'generic' to identify
one generic scheduler or configuration from another. For third-party
schedulers, job data is stored in the location specified by the scheduler
object’s DataLocation property.

out = findResource('scheduler','type','jobmanager',
... 'LookupURL','host:port')
out = findResource('worker','LookupURL','host:port') use the
lookup process of the job manager running at a specific location. The
lookup process is part of a job manager. By default, findResource uses
all the lookup processes that are available to the local machine via
multicast. If you specify 'LookupURL' with a host, findResource uses
the job manager lookup process running at that location. The port is
optional, and is only necessary if the lookup process was configured to
use a port other than the default BASEPORT setting of the mdce_def file.
This URL is where the lookup is performed from, it is not necessarily
the host running the job manager or worker. This unicast call is useful
when you want to find resources that might not be available via
multicast or in a network that does not support multicast.

Note LookupURL is ignored when finding third-party schedulers.

9-38

findResource

out = findResource(... ,'p1', v1, 'p2', v2,...) returns an
array, out, of resources whose property names and property values
match those passed as parameter-value pairs, p1, v1, p2, v2.

Note that the property value pairs can be in any format supported by
the set function.

When a property value is specified, it must use the same exact value
that the get function returns, including letter case. For example,
if get returns the Name property value as 'MyJobManager', then
findResource will not find that object if searching for a Name property
value of 'myjobmanager'.

out = findResource('scheduler', ... 'configuration',
'ConfigurationName') returns an array, out, of schedulers whose
property names and property values match those defined by the
parameters in the configuration ConfigurationName. Configurations
are defined in the file distcompUserConfig.m. For details about
writing and applying configurations, see “Programming with User
Configurations” on page 2-5.

Remarks Note that it is permissible to use parameter-value string pairs,
structures, parameter-value cell array pairs, and configurations in the
same call to findResource.

Examples Find a particular job manager by its name and host.

jm1 = findResource('scheduler','type','jobmanager', ...
'Name', 'ClusterQueue1');

Find all job managers. In this example, there are four.

all_job_managers = findResource('scheduler','type','jobmanager')

all_job_managers =

distcomp.jobmanager: 1-by-4

9-39

findResource

Find all job managers accessible from the lookup service on a particular
host.

jms = findResource('scheduler','type','jobmanager', ...
'LookupURL','host234');

Find a particular job manager accessible from the lookup service on
a particular host. In this example, subnet2.hostalpha port 6789 is
where the lookup is performed, but the job manager named SN2Jmgr
might be running on another machine.

jm = findResource('scheduler','type','jobmanager', ...

'LookupURL', 'subnet2.hostalpha:6789', 'Name', 'SN2JMgr');

Find the LSF scheduler on the network.

lsf_sched = findResource('scheduler','type','LSF')

See Also findJob, findTask

9-40

findTask

Purpose Task objects belonging to job object

Syntax tasks = findTask(obj)
[pending running finished] = findTask(obj)
tasks = findTask(obj,'p1',v1,'p2',v2,...)

Arguments obj Job object.

tasks Returned task objects.

pending Array of tasks in job obj whose State is
pending.

running Array of tasks in job obj whose State is
running.

finished Array of tasks in job obj whose State is
finished.

p1, p2 Task object properties to match.

v1, v2 Values for corresponding object properties.

Description tasks = findTask(obj) gets a 1-by-N array of task objects belonging
to a job object obj.

[pending running finished] = findTask(obj) returns arrays of all
task objects stored in the job object obj, sorted by state.

tasks = findTask(obj,'p1',v1,'p2',v2,...) gets a 1-by-N array
of task objects belonging to a job object obj. The returned task objects
will be only those having the specified property-value pairs.

Note that the property value pairs can be in any format supported
by the set function, i.e., param-value string pairs, structures, and
param-value cell array pairs. If a structure is used, the structure
field names are object property names and the field values are the
appropriate property values to match.

9-41

findTask

When a property value is specified, it must use the same exact value
that the get function returns, including letter case. For example, if get
returns the Name property value as MyTask, then findTask will not find
that object while searching for a Name property value of mytask.

Remarks If obj is contained in a remote service, findTask will result in a call to
the remote service. This could result in findTask taking a long time to
complete, depending on the number of tasks retrieved and the network
speed. Also, if the remote service is no longer available, an error will
be thrown.

Examples Create a job object.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

obj = createJob(jm);

Add a task to the job object.

createTask(obj, @rand, 1, {10})

Create the task object t, which refers to the task we just added to obj.

t = findTask(obj)

See Also createJob, createTask, findJob

9-42

gather

Purpose Convert distributed array into replicated array

Syntax X = gather(D)
X = gather(D, lab)

Description X = gather(D) is a replicated array formed from the distributed
array D.

D = distribute(gather(D)) returns the original distributed array D.

X = gather(D, lab) converts a distributed array D to a variant array
X, such that all of the data is contained on lab lab, and X is a 0-by-0
empty double on all other labs.

Remarks Note that gather assembles the distributed array in the workspaces
of all the labs on which it executes, not on the MATLAB client. If you
want to transfer a distributed array into the client workspace, first
gather it, then move it from a lab to the client with pmode lab2client.
See the pmode reference page for more details.

As the gather function requires communication between all the labs,
you cannot gather data from all the labs onto a single lab by placing the
function inside a conditional statement such as if labindex == 1.

As gather performs the inverse of distribute, be aware that if you
use distribute on a nonreplicated array, gather does not return the
original. For example, gather(distribute(rand(n,m))) does not
return the original random matrix, because rand generates a different
matrix on each lab in the first place, therefore the original matrix is
variant, not replicated.

Examples Distribute a magic square across your labs, then gather the matrix onto
every lab. This code returns M = magic(n) on all labs.

D = distribute(magic(n))
M = gather(D)

9-43

gather

Gather all of the data in D onto lab 1, so that it can be saved from there.

D = distribute(magic(n));
out = gather(D, 1);
if labindex == 1

save data.mat out;
end

See Also distribute, pmode

9-44

gcat

Purpose Global concatenation

Syntax Xs = gcat(X)
Xs = gcat(X, dim)

Description Xs = gcat(X) concatenates the variant arrays X from each lab in the
second dimension. The result is replicated on all labs.

Xs = gcat(X, dim) concatenates the variant arrays X from each lab
in the dim-th dimension.

Examples With four labs,

Xs = gcat(labindex)

returns Xs = [1 2 3 4] on all four labs.

See Also cat MATLAB function reference page

gop, labindex, numlabs

9-45

get

Purpose Object properties

Syntax get(obj)
out = get(obj)
out = get(obj,'PropertyName')

Arguments obj An object or an array of objects.

'PropertyName' A property name or a cell array of property names.

out A single property value, a structure of property
values, or a cell array of property values.

Description get(obj) returns all property names and their current values to the
command line for obj.

out = get(obj) returns the structure out where each field name is the
name of a property of obj, and each field contains the value of that
property.

out = get(obj,'PropertyName') returns the value out of the property
specified by PropertyName for obj. If PropertyName is replaced by a
1-by-n or n-by-1 cell array of strings containing property names, then
get returns a 1-by-n cell array of values to out. If obj is an array
of objects, then out will be an m-by-n cell array of property values
where m is equal to the length of obj and n is equal to the number of
properties specified.

Remarks When specifying a property name, you can do so without regard to case,
and you can make use of property name completion. For example, if jm
is a job manager object, then these commands are all valid and return
the same result.

out = get(jm,'HostAddress');
out = get(jm,'hostaddress');
out = get(jm,'HostAddr');

9-46

get

Examples This example illustrates some of the ways you can use get to return
property values for the job object j1.

get(j1,'State')
ans =
pending

get(j1,'Name')
ans =
MyJobManager_job

out = get(j1);
out.State
ans =
pending

out.Name
ans =
MyJobManager_job

two_props = {'State' 'Name'};
get(j1, two_props)
ans =

'pending' 'MyJobManager_job'

See Also inspect, set

9-47

getAllOutputArguments

Purpose Output arguments from evaluation of all tasks in job object

Syntax data = getAllOutputArguments(obj)

Arguments obj Job object whose tasks generate output arguments.

data M-by-N cell array of job results.

Description data = getAllOutputArguments(obj) returns data, the output data
contained in the tasks of a finished job. If the job has M tasks, each row
of the M-by-N cell array data contains the output arguments for the
corresponding task in the job. Each row has N columns, where N is the
greatest number of output arguments from any one task in the job. The
N elements of a row are arrays containing the output arguments from
that task. If a task has less than N output arguments, the excess arrays
in the row for that task are empty. The order of the rows in data will be
the same as the order of the tasks contained in the job.

Remarks If you are using a job manager, getAllOutputArguments results in a call
to a remote service, which could take a long time to complete, depending
on the amount of data being retrieved and the network speed. Also, if
the remote service is no longer available, an error will be thrown.

Note that issuing a call to getAllOutputArguments will not remove the
output data from the location where it is stored. To remove the output
data, use the destroy function to remove the individual task or their
parent job object.

The same information returned by getAllOutputArguments can be
obtained by accessing the OutputArguments property of each task in
the job.

Examples Create a job to generate a random matrix.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

9-48

getAllOutputArguments

j = createJob(jm, 'Name', 'myjob');
t = createTask(j, @rand, 1, {10});
submit(j);
data = getAllOutputArguments(j);

Display the 10-by-10 random matrix.

disp(data{1});
destroy(j);

See Also submit

9-49

getCurrentJob

Purpose Job object whose task is currently being evaluated

Syntax job = getCurrentJob

Arguments job The job object that contains the task currently being
evaluated by the worker session.

Description job = getCurrentJob returns the job object that is the Parent of the
task currently being evaluated by the worker session.

Remarks If the function is executed in a MATLAB session that is not a worker,
you get an empty result.

See Also getCurrentJobmanager, getCurrentTask, getCurrentWorker,
getFileDependencyDir

9-50

getCurrentJobmanager

Purpose Job manager object that distributed current task

Syntax jm = getCurrentJobmanager

Arguments jm The job manager object that distributed the task
currently being evaluated by the worker session.

Description jm = getCurrentJobmanager returns the job manager object that has
sent the task currently being evaluated by the worker session. jm is
the Parent of the task’s parent job.

Remarks If the function is executed in a MATLAB session that is not a worker,
you get an empty result.

If your tasks are distributed by a third-party scheduler instead of a job
manager, getCurrentJobmanager returns a distcomp.taskrunner
object.

See Also getCurrentJob, getCurrentTask, getCurrentWorker,
getFileDependencyDir

9-51

getCurrentTask

Purpose Task object currently being evaluated in this worker session

Syntax task = getCurrentTask

Arguments task The task object that the worker session is currently
evaluating.

Description task = getCurrentTask returns the task object that is currently being
evaluated by the worker session.

Remarks If the function is executed in a MATLAB session that is not a worker,
you get an empty result.

See Also getCurrentJob, getCurrentJobmanager, getCurrentWorker,
getFileDependencyDir

9-52

getCurrentWorker

Purpose Worker object currently running this session

Syntax worker = getCurrentWorker

Arguments worker The worker object that is currently evaluating the task
that contains this function.

Description worker = getCurrentWorker returns the worker object representing
the session that is currently evaluating the task that calls this function.

Remarks If the function is executed in a MATLAB session that is not a worker
or if you are using a third-party scheduler instead of a job manager,
you get an empty result.

Examples Create a job with one task, and have the task return the name of the
worker that evaluates it.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
t = createTask(j, @() get(getCurrentWorker,'Name'), 1, {});
submit(j)
waitForState(j)
get(t,'OutputArgument')
ans =

'c5_worker_43'

The function of the task t is an anonymous function that first executes
getCurrentWorker to get an object representing the worker that is
evaluating the task. Then the task function uses get to examine
the Name property value of that object. The result is placed in the
OutputArgument property of the task.

See Also getCurrentJob, getCurrentJobmanager, getCurrentTask,
getFileDependencyDir

9-53

getDebugLog

Purpose Read output messages from job run by supported third-party scheduler

Syntax str = getDebugLog(sched, job_or_task)

Arguments str Variable to which messages are returned as a
string expression.

sched Scheduler object referring to mpiexec, LSF, or
CCS scheduler, created by findResource.

job_or_task Object identifying job, parallel job, or task whose
messages you want.

Description str = getDebugLog(sched, job_or_task) returns any output written
to the standard output or standard error stream by the job or task
identified by job_or_task, being run by the scheduler identified by
sched. You cannot use this function to retrieve messages from a task if
the scheduler is mpiexec.

Examples Construct a scheduler object so you can create a parallel job. Assume
that the file distcompUserConfig.m has a configuration called mpiexec.

mpiexecObj = findResource('scheduler', 'Configuration', 'mpiexec');

Complete the initialization of the scheduler object by setting all the
necessary properties on it.

set(mpiexecObj, 'Configuration', 'mpiexec');

Create and submit a parallel job.

job = createParallelJob(mpiexecObj);
createTask(job, @labindex, 1, {});
submit(job);

9-54

getDebugLog

Look at the debug log.

getDebugLog(mpiexecObj, job);

See Also findResource, createJob, createParallelJob, createTask

9-55

getFileDependencyDir

Purpose Directory where FileDependencies are written on worker machine

Syntax depdir = getFileDependencyDir

Arguments depdir String indicating directory where FileDependencies
are placed.

Description depdir = getFileDependencyDir returns a string, which is the path
to the local directory into which FileDependencies are written. This
function will return an empty array if it is not called on a MATLAB
worker.

Examples Find the current directory for FileDependencies.

ddir = getFileDependencyDir;

Change to that directory to invoke an executable.

cdir = cd(ddir);

Invoke the executable.

[OK, output] = system('myexecutable');

Change back to the original directory

cd(cdir);

See Also Functions

getCurrentJob, getCurrentJobmanager, getCurrentTask,
getCurrentWorker

Properties

FileDependencies

9-56

gop

Purpose Global operation across all labs

Syntax gop(@F, x)

Arguments F Function to operate across labs.

x Argument to function F, should be same variable on all
labs.

Description gop(@F, x) is the reduction via the function F of the quantities x from
each lab. The result is duplicated on all labs.

The function F(x,y) should accept two arguments of the same type and
produce one result of that type, so it can be used iteratively, that is,

F(F(x1,x2),F(x3,x4))

The function F should be associative, that is,

F(F(x1, x2), x3) = F(x1, F(x2, x3))

Examples Calculate the sum of all labs’ value for x.

gop(@plus,x)

Find the maximum value of x among all the labs.

gop(@max,x)

Perform the horizontal concatenation of x from all labs.

gop(@horzcat,x)

Calculate the 2-norm of x from all labs.

gop(@(a1,a2)norm([a1 a2]),x)

9-57

gop

See Also labBarrier, numlabs

9-58

gplus

Purpose Global addition

Syntax s = gplus(x)

Description s = gplus(x) returns the addition of the x from each lab. The result is
replicated on all labs.

Examples With four labs,

s = gplus(labindex)

returns s = 1 + 2 + 3 + 4 = 10 on all four labs.

See Also gop, labindex

9-59

help

Purpose Help for toolbox functions in Command Window

Syntax help class/function

Arguments class A Distributed Computing Toolbox object class:
distcomp.jobmanager, distcomp.job, or
distcomp.task.

function A function for the specified class. To see what
functions are available for a class, see the methods
reference page.

Description help class/function returns command-line help for the specified
function of the given class.

If you do not know the class for the function, use class(obj), where
function is of the same class as the object obj.

Examples Get help on functions from each of the Distributed Computing Toolbox
object classes.

help distcomp.jobmanager/createJob
help distcomp.job/cancel
help distcomp.task/waitForState

class(j1)
ans =
distcomp.job
help distcomp.job/createTask

See Also methods

9-60

Inf

Purpose Create distributed array of Inf values

Syntax D = Inf(n, dist)
D = Inf(m, n, dist)
D = Inf([m, n], dist)
D = Inf(..., classname, dist)

Description D = Inf(n, dist) creates an n-by-n distributed array of underlying
class double. D is distributed by dimension dim, where dim
= distribdim(dist), and with partition PAR, where PAR =
partition(dist). If dim is unspecified, then D is distributed
by its second dimension. If PAR is unspecified, then D uses
dcolonpartition(n) as its partition. The easiest way to do this is to
use a default distributor where both dim and PAR are unspecified (dist
= distributor()) as input to eye.

D = Inf(m, n, dist) and D = Inf([m, n], dist) create an m-by-n
distributed array of underlying class double. The distribution dimension
dim and partition PAR can be specified by dist as above, but if they are
not specified, dim is taken to be the last nonsingleton dimension of D, and
PAR is provided by dcolonpartition over the size in that dimension.

D = Inf(..., classname, dist) optionally specifies the class of the
distributed array D. Valid choices are the same as for the regular Inf
function: 'double' (the default), and 'single'.

Examples With four labs,

D = Inf(1000, distributor())

creates a 1000-by-1000 distributed double array D, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of D.

D = Inf(10, 10, 'single', distributor('partition', 1:numlabs))

creates a 10-by-10 distributed single array D, distributed by its columns.
Each lab contains a 10-by-labindex local piece of D.

9-61

Inf

See Also Inf MATLAB function reference page

cell, eye, false, NaN, ones, rand, randn, sparse, speye, sprand,
sprandn, true, zeros

9-62

inspect

Purpose Open Property Inspector

Syntax inspect(obj)

Arguments obj An object or an array of objects.

Description inspect(obj) opens the Property Inspector and allows you to inspect
and set properties for the object obj.

Remarks You can also open the Property Inspector via the Workspace browser by
double-clicking an object.

The Property Inspector does not automatically update its display. To
refresh the Property Inspector, open it again.

Note that properties that are arrays of objects are expandable. In
the figure of the example below, the Tasks property is expanded to
enumerate the individual task objects that make up this property.
These individual task objects can also be expanded to display their
own properties.

9-63

inspect

Examples Open the Property Inspector for the job object j1.

inspect(j1)

See Also get, set

9-64

isdistributed

Purpose True for distributed array

Syntax tf = isdistributed(X)

Description tf = isdistributed(X) returns true for a distributed array, or false
otherwise.

Examples L = ones(100, 1)
D = distribute(L)
isdistributed(L) % returns false
isdistributed(D) % returns true

See Also darray, distribute, zeros

9-65

isreplicated

Purpose True for replicated array

Syntax tf = isreplicated(X)

Description tf = isreplicated(X) returns true for a replicated array, or false
otherwise.

Remarks isreplicated(X) requires checking for equality of the array X across
all labs. This might require extensive communication and time.
isreplicated is most useful for debugging or error checking small
arrays. A distributed array is not replicated.

Examples A = magic(3);
t = isreplicated(A); % returns t = true
B = magic(labindex);
f = isreplicated(B); % returns f = false

See Also isdistributed

9-66

jobStartup

Purpose M-file for user-defined options to run when job starts

Syntax jobStartup(job)

Arguments job The job for which this startup is being executed.

Description jobStartup(job) runs automatically on a worker the first time the
worker evaluates a task for a particular job. You do not call this function
from the client session, nor explicitly as part of a task function.

The function M-file resides in the worker’s MATLAB installation at

matlabroot/toolbox/distcomp/user/jobStartup.m

You add M-code to the file to define job initialization actions to be
performed on the worker when it first evaluates a task for this job.

Alternatively, you can create a file called jobStartup.m and include it
as part of the job’s FileDependencies property. The version of the file
in FileDependencies takes precedence over the version in the worker’s
MATLAB installation.

For further detail, see the text in the installed jobStartup.m file.

See Also Functions

taskFinish, taskStartup

Properties

FileDependencies

9-67

labBarrier

Purpose Block execution until all labs reach this call

Syntax labBarrier

Description labBarrier blocks execution of a parallel algorithm until all labs have
reached the call to labBarrier. This is useful for coordinating access to
shared resources such as file I/O.

Examples In this example, all labs know the shared data filename.

fname = 'c:\data\datafile.mat';

Lab 1 writes some data to the file, which all other labs will read.

if labindex == 1

data = randn(100, 1);

save(fname, 'data');

pause(5) %allow time for file to become available to other labs

end

All labs wait until all have reached the barrier; this ensures that no lab
attempts to load the file until lab 1 writes to it.

labBarrier;
load(fname);

See Also labBroadcast

9-68

labBroadcast

Purpose Send data to all labs or receive data sent to all labs

Syntax shared_data = labBroadcast(senderlab, data)
shared_data = labBroadcast(senderlab)

Arguments senderlab The labindex of the lab sending the broadcast.

data The data being broadcast. This argument is
required only for the lab that is broadcasting.
The absence of this argument indicates that a
lab is receiving.

shared_data The broadcast data as it is received on all other
labs.

Description shared_data = labBroadcast(senderlab, data) sends the specified
data to all executing labs. The data is broadcast from the lab with
labindex == senderlab, and received by all other labs.

shared_data = labBroadcast(senderlab) receives on each executing
lab the specified shared_data that was sent from the lab whose
labindex is senderlab.

If labindex is not senderlab, then you do not include the data
argument. This indicates that the function is to receive data, not
broadcast it. The received data, shared_data, is identical on all labs.

This function blocks execution until the lab’s involvement in the
collective broadcast operation is complete. Because some labs may
complete their call to labBroadcast before others have started, use
labBarrier to guarantee that all labs are at the same point in a
program.

Examples In this case, the broadcaster is the lab whose labindex is 1.

broadcast_id = 1;
if labindex == broadcast_id

data = randn(10);

9-69

labBroadcast

shared_data = labBroadcast(broadcast_id, data);
else

shared_data = labBroadcast(broadcast_id);
end

See Also labBarrier, labindex

9-70

labindex

Purpose Index of this lab

Syntax id = labindex

Description id = labindex returns the index of the lab currently executing the
function. labindex is assigned to each lab when a job begins execution,
and applies only for the duration of that job. The value of labindex
spans from 1 to n, where n is the number of labs running the current
job, defined by numlabs.

See Also numlabs

9-71

labProbe

Purpose Test to see if messages are ready to be received from other lab

Syntax is_data_available = labProbe
is_data_available = labProbe(source)
is_data_available = labProbe('any',tag)
is_data_available = labProbe(source,tag)
[is_data_available, source, tag] = labProbe

Arguments source labindex of a particular lab from which to
test for a message.

tag Tag defined by the sending lab’s labSend
function to identify particular data.

'any' String to indicate that all labs should be
tested for a message.

is_data_available Boolean indicating if a message is ready to
be received.

Description is_data_available = labProbe returns a logical value indicating
whether any data is available for this lab to receive with the labReceive
function.

is_data_available = labProbe(source) tests for a message only
from the specified lab.

is_data_available = labProbe('any',tag) tests only for a message
with the specified tag, from any lab.

is_data_available = labProbe(source,tag) tests for a message
from the specified lab and tag.

[is_data_available, source, tag] = labProbe returns labindex
and tag of ready messages. If no data is available, source and tag are
returned as [].

See Also labindex, labReceive, labSend

9-72

labReceive

Purpose Receive data from another lab

Syntax data = labReceive
data = labReceive(source)
data = labReceive('any',tag)
data = labReceive(source,tag)
[data, source, tag] = labReceive

Arguments source labindex of a particular lab from which to
receive data.

tag Tag defined by the sending lab’s labSend
function to identify particular data.

'any' String to indicate that data can come from any
lab.

data Data sent by the sending lab’s labSend function.

Description data = labReceive receives data from any lab with any tag.

data = labReceive(source) receives data from the specified lab with
any tag

data = labReceive('any',tag) receives data from any lab with the
specified tag.

data = labReceive(source,tag) receives data from only the specified
lab with the specified tag.

[data, source, tag] = labReceive returns the source and tag with
the data.

Remarks This function blocks execution in the lab until the corresponding call to
labSend occurs in the sending lab.

See Also labBarrier, labindex, labProbe, labSend

9-73

labSend

Purpose Send data to another lab

Syntax labSend(data, destination)
labSend(data, destination, tag)

Arguments data Data sent to the other lab; any MATLAB data
type.

destination labindex of receiving lab.

tag Nonnegative integer to identify data.

Description labSend(data, destination) sends the data to the specified
destination, with a tag of 0.

labSend(data, destination, tag) sends the data to the specified
destination with the specified tag. data can be any MATLAB data
type. destination identifies the labindex of the receiving lab, and
must be either a scalar or a vector of integers between 1 and numlabs;
it cannot be labindex (i.e., the current lab). tag can be any integer
from 0 to 32767.

Remarks This function might return before the corresponding labReceive
completes in the receiving lab.

See Also labBarrier, labindex, labProbe, labReceive, numlabs

9-74

labSendReceive

Purpose Simultaneously send data to and receive data from another lab

Syntax received = labSendReceive(labTo, labFrom, data)
received = labSendReceive(labTo, labFrom, data, tag)

Arguments data Data on the sending lab that is sent to the
receiving lab; any MATLAB data type.

received Data accepted on the receiving lab.

labTo labindex of the lab to which data is sent.

labFrom labindex of the lab from which data is received.

tag Nonnegative integer to identify data.

Description received = labSendReceive(labTo, labFrom, data) sends data to
the lab whose labindex is labTo, and receives received from the lab
whose labindex is labFrom. labTo and labFrom must be scalars. This
function is conceptually equivalent to the following sequence of calls:

labSend(data, labTo);
received = labReceive(labFrom);

with the important exception that both the sending and receiving of
data happens concurrently. This can eliminate deadlocks that might
otherwise occur if the equivalent call to labSend would block.

If labTo is an empty array, labSendReceive does not send data, but
only receives. If labFrom is an empty array, labSendReceive does not
receive data, but only sends.

received = labSendReceive(labTo, labFrom, data, tag) uses
the specified tag for the communication. tag can be any integer from
0 to 32767.

Examples Create a unique set of data on each lab, and transfer each lab’s data one
lab to the right (to the next higher labindex).

9-75

labSendReceive

First use magic to create a unique value for the variant array mydata
on each lab.

mydata = magic(labindex)
1: mydata =
1: 1
2: mydata =
2: 1 3
2: 4 2
3: mydata =
3: 8 1 6
3: 3 5 7
3: 4 9 2

Define the lab on either side, so that each lab will receive data from the
lab on the “left” while sending data to the lab on the “right,” cycling
data from the end lab back to the beginning lab.

labTo = mod(labindex, numlabs) + 1; % one lab to the right

labFrom = mod(labindex - 2, numlabs) + 1; % one lab to the left

Transfer the data, sending each lab’s mydata into the next lab’s
otherdata variable, wrapping the third lab’s data back to the first lab.

otherdata = labSendReceive(labTo, labFrom, mydata)
1: otherdata =
1: 8 1 6
1: 3 5 7
1: 4 9 2
2: otherdata =
2: 1
3: otherdata =
3: 1 3
3: 4 2

Transfer data to the next lab without wrapping data from the last lab
to the first lab.

9-76

labSendReceive

if labindex < numlabs; labTo = labindex + 1; else labTo = []; end;

if labindex > 1; labFrom = labindex - 1; else labFrom = []; end;

otherdata = labSendReceive(labTo, labFrom, mydata)

1: otherdata =

1: []

2: otherdata =

2: 1

3: otherdata =

3: 1 3

3: 4 2

See Also labBarrier, labindex, labProbe, labReceive, labSend numlabs

9-77

length

Purpose Length of object array

Syntax length(obj)

Arguments obj An object or an array of objects.

Description length(obj) returns the length of obj. It is equivalent to the command
max(size(obj)).

Examples Examine how many tasks are in the job j1.

length(j1.Tasks)
ans =

9

See Also size

9-78

local

Purpose Local portion of distributed array

Syntax L = local(A)

Description L = local(A) returns the local portion of a distributed array.

Examples With four labs

A = magic(4)
D = distribute(A, 1)
L = local(D)

returns

Lab 1: L = [16 2 3 13]
Lab 2: L = [5 11 10 8]
Lab 3: L = [9 7 6 12]
Lab 4: L = [4 14 15 1]

See Also darray, distribute, distributor, partition

9-79

localspan

Purpose Index range of local segment of distributed array

Syntax K = localspan(D)
[e, f] = localspan(D)
K = localspan(D, lab)
[e, f] = localspan(D, lab)

Description The local span of a distributor is the index range in the distributed
dimension for a distributed array on a particular lab.

K = localspan(D) returns a vector K, so that local(D) = D(..., K,
...) on the current lab.

[e, f] = localspan(D) returns two integers e and f so that local(D)
= D(..., e:f, ...) on the current lab.

K = localspan(D, lab) returns a vector K so that local(D) = D(...,
K, ...) on the specified lab.

[e, f] = localspan(D, lab) returns two integers e and f so that
local(D) = D(..., e:f, ...) on the specified lab.

In all of the above syntaxes, if the partition is unspecified, then K,
e, and f are all -1.

Examples dist = distributor('distribdim', 2, 'partition', [6 6 5 5])
On lab 1, K = localspan(dist) returns K = 1:6.
On lab 2, [e, f] = localspan(dist) returns e = 7, f = 12.
K = localspan(dist, 3) returns K = 13:17.
[e, f] = localspan(dist, 4) returns e = 18, f = 22.

See Also distribdim, distributor, local, partition

9-80

methods

Purpose List functions of object class

Syntax methods(obj)
out = methods(obj)

Arguments obj An object or an array of objects.

out Cell array of strings.

Description methods(obj) returns the names of all methods for the class of which
obj is an instance.

out = methods(obj) returns the names of the methods as a cell array
of strings.

Examples Create job manager, job, and task objects, and examine what methods
are available for each.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

methods(jm)
Methods for class distcomp.jobmanager:
createJob demote pause resume
createParallelJob findJob promote

j1 = createJob(jm);
methods(j1)
Methods for class distcomp.job:
cancel destroy getAllOutputArguments waitForState
createTask findTask submit

t1 = createTask(j1, @rand, 1, {3});
methods(t1)
Methods for class distcomp.task:
cancel destroy waitForState

9-81

methods

See Also help, get

9-82

mpiLibConf

Purpose Location of MPI implementation

Syntax [primaryLib, extras] = mpiLibConf

Arguments primaryLib MPI implementation library used by a parallel
job.

extras Cell array of other required library names.

Description [primaryLib, extras] = mpiLibConf returns the MPI
implementation library to be used by a parallel job. primaryLib is the
name of the shared library file containing the MPI entry points. extras
is a cell array of other library names required by the MPI library.

To supply an alternative MPI implementation, create an M-file called
mpiLibConf, and place it on the MATLAB path. The recommended
location is matlabroot/toolbox/distcomp/user.

Remarks Under all circumstances, the MPI library must support all MPI-1
functions. Additionally, the MPI library must support null arguments
to MPI_Init as defined in section 4.2 of the MPI-2 standard. The
library must also use an mpi.h header file that is fully compatible
with MPICH2.

When used with the MathWorks job manager, the MPI library must
support the following additional MPI-2 functions:

• MPI_Open_port

• MPI_Comm_accept

• MPI_Comm_connect

Examples View the current MPI implementation library.

mpiLibConf
mpich2.dll

9-83

mpiSettings

Purpose Configure options for MPI communication

Syntax mpiSettings('DeadlockDetection','on')
mpiSettings('MessageLogging','on')
mpiSettings('MessageLoggingDestination','CommandWindow')
mpiSettings('MessageLoggingDestination','stdout')
mpiSettings('MessageLoggingDestination','File','filename')

Description mpiSettings('DeadlockDetection','on') turns on deadlock detection
during calls to labSend and labReceive (the default is 'off' for
performance reasons). If deadlock is detected, a call to labReceive
might cause an error. Although it is not necessary to enable deadlock
detection on all labs, this is the most useful option.

mpiSettings('MessageLogging','on') turns on MPI message logging.
The default is 'off'. The default destination is the MATLAB Command
Window.

mpiSettings('MessageLoggingDestination','CommandWindow') sends
MPI logging information to the MATLAB Command Window. If
the task within a parallel job is set to capture Command Window
output, the MPI logging information will be present in the task’s
CommandWindowOutput property.

mpiSettings('MessageLoggingDestination','stdout') sends MPI
logging information to the standard output for the MATLAB process. If
you are using a job manager, this is the MDCE service log file; if you
are using an mpiexec scheduler, this is the mpiexec debug log, which
you can read with getDebugLog.

mpiSettings('MessageLoggingDestination','File','filename')
sends MPI logging information to the specified file.

Remarks Setting the MessageLoggingDestination does not automatically enable
message logging. A separate call is required to enable message logging.

mpiSettings has to be called on the lab, not the client. That is, it
should be called within the task function, within jobStartup.m, or
within taskStartup.m.

9-84

mpiSettings

Examples % in "jobStartup.m" for a parallel job

mpiSettings('DeadlockDetection', 'on');

myLogFname = sprintf('%s_%d.log', tempname, labindex);

mpiSettings('MessageLoggingDestination', 'File', myLogFname);

mpiSettings('MessageLogging', 'on');

9-85

NaN

Purpose Create distributed array of NaN values

Syntax D = NaN(n, dist)
D = NaN(m, n, dist)
D = NaN([m, n], dist)
D = NaN(..., classname, dist)

Description D = NaN(n, dist) creates an n-by-n distributed array of underlying
class double. D is distributed by dimension dim, where dim
= distribdim(dist), and with partition PAR, where PAR =
partition(dist). If dim is unspecified, then D is distributed
by its second dimension. If PAR is unspecified, then D uses
dcolonpartition(n) as its partition. The easiest way to do this is to
use a default distributor where both dim and PAR are unspecified (dist
= distributor()) as input to eye.

D = NaN(m, n, dist) and D = NaN([m, n], dist) create an m-by-n
distributed array of underlying class double. The distribution dimension
dim and partition PAR can be specified by dist as above, but if they are
not specified, dim is taken to be the last nonsingleton dimension of D, and
PAR is provided by dcolonpartition over the size in that dimension.

D = NaN(..., classname, dist) optionally specifies the class of the
distributed array D. Valid choices are the same as for the regular NaN
function: 'double' (the default), and 'single'.

Examples With four labs,

D = NaN(1000, distributor())

creates a 1000-by-1000 distributed double array D, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of D.

D = NaN(10, 10, 'single', distributor('partition', 1:numlabs))

creates a 10-by-10 distributed single array D, distributed by its columns.
Each lab contains a 10-by-labindex local piece of D.

9-86

NaN

See Also NaN MATLAB function reference page

cell, eye, false, Inf, ones, rand, randn, sparse, speye, sprand,
sprandn, true, zeros

9-87

numlabs

Purpose Total number of labs operating in parallel on current job

Syntax n = numlabs

Description n = numlabs returns the total number of labs currently operating on
the current job. This value is the maximum value that can be used with
labSend and labReceive.

See Also labindex, labReceive, labSend

9-88

ones

Purpose Create distributed array of 1s

Syntax D = ones(n, dist)
D = ones(m, n, dist)
D = ones([m, n], dist)
D = ones(..., classname, dist)

Description D = ones(n, dist) creates an n-by-n distributed array of
underlying class double. D is distributed by dimension dim, where
dim = distribdim(dist), and with partition PAR, where PAR
= partition(dist). If dim is unspecified, then D is distributed
by its second dimension. If PAR is unspecified, then D uses
dcolonpartition(n) as its partition. The easiest way to do this is to
use a default distributor where both dim and PAR are unspecified (dist
= distributor()) as input to eye.

D = ones(m, n, dist) and D = ones([m, n], dist) create an
m-by-n distributed array of underlying class double. The distribution
dimension dim and partition PAR can be specified by dist as above,
but if they are not specified, dim is taken to be the last nonsingleton
dimension of D, and PAR is provided by dcolonpartition over the size
in that dimension.

D = ones(..., classname, dist) optionally specifies the class of the
distributed array D. Valid choices are the same as for the regular ones
function: 'double' (the default), 'single', 'int8', 'uint8', 'int16',
'uint16', 'int32', 'uint32', 'int64', and 'uint64'.

Examples With four labs,

D = ones(1000, distributor())

creates a 1000-by-1000 distributed double array D, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of D.

D = ones(10, 10, 'uint16', distributor('partition', 1:numlabs))

9-89

ones

creates a 10-by-10 distributed uint16 array D, distributed by its
columns. Each lab contains a 10-by-labindex local piece of D.

See Also ones MATLAB function reference page

cell, eye, false, Inf, NaN, rand, randn, sparse, speye, sprand,
sprandn, true, zeros

9-90

parfor

Purpose Parallel for-loop

Syntax PARFOR variable = colonop
statement
...
statement

end

Description The general format is

PARFOR variable = colonop
statement
...
statement

end

The colonop is an expression of the form start:increment:finish
or start:finish. The default value of increment is 1. The colonop
is partitioned by dcolon into numlabs contiguous segments of nearly
equal length. Each segment becomes the iterator for a conventional
for-loop on an individual lab.

The most important property of the loop body is that each iteration
must be independent of the other iterations. Logically, the iterations
can be done in any order. No communication with other labs is allowed
within the loop body. The functions that perform communication are
gop, gcat, gplus, darray, distribute, gather, and redistribute.

It is possible to access portions of distributed arrays that are local to
each lab, but it is not possible to access other portions of distributed
arrays.

The break statement can be used to terminate the loop prematurely.

9-91

parfor

Examples Find the rank of magic squares. Access only the local portion of a
distributed array.

r = zeros(1, 40, distributor());
parfor n = 1:40

r(n) = rank(magic(n));
end
r = gather(r);

Perform Monte Carlo approximation of pi. Each lab is initialized to a
different random number state.

m = 10000;
parfor p = 1:numlabs

z = rand(m, 1) + i*rand(m, 1);
c = sum(abs(z) < 1)

end
k = gplus(c)
p = 4*k/(m*numlabs);

Attempt to compute Fibonacci numbers. This will not work, because the
loop bodies are dependent.

f = zeros(1, 50, distributor());
f(1) = 1;
f(2) = 2;
parfor n = 3:50

f(n) = f(n - 1) + f(n - 2)
end

See Also for MATLAB function reference page

numlabs

9-92

partition

Purpose Partition of distributor

Syntax PAR = partition(dist)

Description PAR = partition(dist) returns the partition of a distributor.

Examples partition(distributor('partition', [3 3 2 2]))

returns [3 3 2 2] .

See Also distribdim, distributor, localspan

9-93

pause

Purpose Pause job manager queue

Syntax pause(jm)

Arguments jm Job manager object whose queue is paused.

Description pause(jm) pauses the job manager’s queue so that jobs waiting in the
queued state will not run. Jobs that are already running also pause,
after completion of tasks that are already running. No further jobs or
tasks will run until the resume function is called for the job manager.

The pause function does nothing if the job manager is already paused.

See Also resume, waitForState

9-94

pload

Purpose Load file into parallel session

Syntax pload(fileroot)

Arguments fileroot Part of filename common to all saved files being loaded.

Description pload(fileroot) loads the data from the files named [fileroot
num2str(labindex)] into the labs running a parallel job. The files
should have been created by the psave command. The number of labs
should be the same as the number of files. The files should be accessible
to all the labs. Any distributed arrays are reconstructed by this function.
If fileroot contains an extension, the character representation of the
labindex will be inserted before the extension. Thus, pload('abc')
attempts to load the file abc1.mat on lab 1, abc2.mat on lab 2, and so on.

Examples Create three variables — one replicated, one variant, and one
distributed. Then save the data.

clear all;
rep = speye(numlabs);
var = magic(labindex);
D = eye(numlabs,distributor());
psave('threeThings');

This creates three files (threeThings1.mat, threeThings2.mat,
threeThings3.mat) in the current working directory.

Clear the workspace on all the labs and confirm there are no variables.

clear all
whos

9-95

pload

Load the previously saved data into the labs. Confirm its presence.

pload('threeThings');
whos
isreplicated(rep)
isdistributed(D)

See Also load, save MATLAB function reference pages

labindex, numlabs, pmode, psave

9-96

pmode

Purpose Interactive parallel mode

Syntax pmode start conf numlabs
pmode suspend
pmode resume
pmode quit
pmode exit
pmode client2lab clientvar labs labvar
pmode lab2client labvar lab clientvar

Description pmode allows the interactive execution of MATLAB commands on a
cluster of computers. pmode achieves this by defining and submitting
a parallel job that connects the MATLAB client with the labs running
the job. The labs then receive commands from the MATLAB client,
process it, and send the command output back to the MATLAB client.
pmode can be suspended and resumed, and variables can be transferred
between the MATLAB client and the labs.

Note The pmode function is a prototype, and is subject to change or
removal in a future release.

pmode start conf numlabs starts pmode using the Distributed
Computing Toolbox configuration conf to locate the scheduler, submits
a parallel job with for the number of labs identified by numlabs, and
connects the MATLAB client with the labs. When the connection has
been established, the MATLAB client displays the P>> prompt.

The number of labs (numlabs) and the configuration (conf) are both
optional. If the configuration is not specified, pmode looks for a job
manager on the network. If the number of labs is specified, it overrides
the minimum and maximum number of workers specified in the
configuration. If neither is specified, pmode does not put any restrictions
on the minimum or the maximum number of workers running its
parallel job.

9-97

pmode

The P>> prompt: Almost all commands entered at the P>> prompt are
sent to all the labs, evaluated on all of them simultaneously, and their
Command Window output is then displayed in the MATLAB client. The
only commands that are not forwarded to the labs for execution are:

• pmode suspend, pmode quit, and pmode exit.

• Commands known to disrupt communications between the labs and
the client. These include dbstop, keyboard, and input.

To execute a command locally in the client while at the P>> prompt,
prefix the vertical bar (|) to the beginning of the command line. Pressing
Ctrl+C while at the P>> prompt suspends pmode, but does not exit.

pmode suspend suspends pmode, while allowing the parallel job to
continue running on the labs. The command is valid only while at the
P>> prompt.

pmode resume Resumes the P>> prompt from where it had been
suspended. The command is valid only at the regular MATLAB prompt
when suspended.

pmode quit or pmode exit stops pmode on the client, stops the parallel
job and destroys the job. The commands can be entered either at the
P>> prompt or at the regular MATLAB prompt when suspended. If the
MATLAB client session ends while pmode is running, the labs will detect
the loss of contact with the MATLAB client when they become idle, and
the parallel job will stop. The parallel job will then be destroyed the
next time you start pmode.

pmode client2lab clientvar labs labvar copies the variable
clientvar from the MATLAB client to the variable labvar on the labs
identified by labs. If labvar is omitted, the copy is named clientvar.
labs can be either a single lab index or a vector of lab indices. The
command is valid only at the normal MATLAB prompt.

pmode lab2client labvar lab clientvar copies the variable labvar
from lab identified by lab to the variable clientvar on the MATLAB
client. If clientvar is omitted, the copy is named labvar. The
command is valid only at the normal MATLAB prompt.

9-98

pmode

You can invoke pmode as either a command or a function. The following
are equivalent.

pmode start conf 4
pmode('start', 'conf', 4)

Examples Start pmode using the configuration myconfig and 8 labs.

>> pmode start myconfig 8

Execute a command on all labs.

P>> x = 2*labindex;

Suspend pmode and go to the normal MATLAB prompt.

P>> pmode suspend

Copy the variable x from lab 7 to the MATLAB client.

>> pmode lab2client x 7

Copy the variable y from the MATLAB client to labs 1-8.

>> pmode client2lab y 1:8

Resume the suspended pmode session.

>> pmode resume

Display the current working directory of the labs while at the P>>
prompt.

P>> pwd

Display the current working directory of the MATLAB client while at
the P>> prompt.

P>> | pwd

9-99

pmode

See Also createParallelJob, findResource

9-100

promote

Purpose Promote job in job manager queue

Syntax promote(jm, job)

Arguments jm The job manager object that contains the job.

job Job object promoted in the queue.

Description promote(jm, job) promotes the job object job, that is queued in the
job manager jm.

If job is not the first job in the queue, promote exchanges the position
of job and the previous job.

See Also createJob, demote, findJob, submit

9-101

psave

Purpose Save data from parallel job session

Syntax psave(fileroot)

Arguments fileroot Part of filename common to all saved files.

Description psave(fileroot) saves the data from the labs’ workspace into the
files named [fileroot num2str(labindex)]. The files can be loaded
by using the pload command with the same fileroot, which should
point to a directory accessible to all the labs. If fileroot contains an
extension, the character representation of the labindex is inserted
before the extension. Thus, psave('abc') creates the files 'abc1.mat',
'abc2.mat', etc., one for each lab.

Examples Create three variables — one replicated, one variant, and one
distributed. Then save the data.

clear all;
rep = speye(numlabs);
var = magic(labindex);
D = eye(numlabs,distributor());
psave('threeThings');

This creates three files (threeThings1.mat, threeThings2.mat,
threeThings3.mat) in the current working directory.

Clear the workspace on all the labs and confirm there are no variables.

clear all
whos

9-102

psave

Load the previously saved data into the labs. Confirm its presence.

pload('threeThings');
whos
isreplicated(rep)
isdistributed(D)

See Also load, save MATLAB function reference pages

labindex, numlabs, pmode, pload

9-103

rand

Purpose Create distributed array of uniformly distributed pseudo-random
numbers

Syntax D = rand(n, dist)
D = rand(m, n, dist)
D = rand([m, n], dist)
D = rand(..., classname, dist)

Description D = rand(n, dist) creates an n-by-n distributed array of
underlying class double. D is distributed by dimension dim, where
dim = distribdim(dist), and with partition PAR, where PAR
= partition(dist). If dim is unspecified, then D is distributed
by its second dimension. If PAR is unspecified, then D uses
dcolonpartition(n) as its partition. The easiest way to do this is to
use a default distributor where both dim and PAR are unspecified (dist
= distributor()) as input to eye.

D = rand(m, n, dist) and D = rand([m, n], dist) create an
m-by-n distributed array of underlying class double. The distribution
dimension dim and partition PAR can be specified by dist as above,
but if they are not specified, dim is taken to be the last nonsingleton
dimension of D, and PAR is provided by dcolonpartition over the size
in that dimension.

D = rand(..., classname, dist) optionally specifies the class of the
distributed array D. Valid choices are the same as for the regular rand
function: 'double' (the default), 'single', 'int8', 'uint8', 'int16',
'uint16', 'int32', 'uint32', 'int64', and 'uint64'.

Remarks When you use rand in a distributed or parallel job (including pmode),
each worker or lab sets its random generator seed to a value that
depends only on the lab index or task ID. Therefore, the array on each
lab is unique for that job. However, if you repeat the job, you get the
same random data.

9-104

rand

Examples With four labs,

D = rand(1000, distributor())

creates a 1000-by-1000 distributed double array D, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of D.

D = rand(10, 10, 'uint16', distributor('partition', 1:numlabs))

creates a 10-by-10 distributed uint16 array D, distributed by its
columns. Each lab contains a 10-by-labindex local piece of D.

See Also rand MATLAB function reference page

cell, eye, false, Inf, NaN, ones, randn, sparse, speye, sprand,
sprandn, true, zeros

9-105

randn

Purpose Create distributed array of normally distributed random values

Syntax D = randn(n, dist)
D = randn(m, n, dist)
D = randn([m, n], dist)
D = randn(..., classname, dist)

Description D = randn(n, dist) creates an n-by-n distributed array of
underlying class double. D is distributed by dimension dim, where
dim = distribdim(dist), and with partition PAR, where PAR
= partition(dist). If dim is unspecified, then D is distributed
by its second dimension. If PAR is unspecified, then D uses
dcolonpartition(n) as its partition. The easiest way to do this is to
use a default distributor where both dim and PAR are unspecified (dist
= distributor()) as input to eye.

D = randn(m, n, dist) and D = randn([m, n], dist) create an
m-by-n distributed array of underlying class double. The distribution
dimension dim and partition PAR can be specified by dist as above,
but if they are not specified, dim is taken to be the last nonsingleton
dimension of D, and PAR is provided by dcolonpartition over the size
in that dimension.

D = randn(..., classname, dist) optionally specifies the class of
the distributed array D. Valid choices are the same as for the regular
rand function: 'double' (the default), 'single', 'int8', 'uint8',
'int16', 'uint16', 'int32', 'uint32', 'int64', and 'uint64'.

Remarks When you use randn in a distributed or parallel job (including pmode),
each worker or lab sets its random generator seed to a value that
depends only on the lab index or task ID. Therefore, the array on each
lab is unique for that job. However, if you repeat the job, you get the
same random data.

Examples With four labs,

D = randn(1000, distributor())

9-106

randn

creates a 1000-by-1000 distributed double array D, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of D.

D = randn(10, 10, 'uint16', distributor('partition', 1:numlabs))

creates a 10-by-10 distributed uint16 array D, distributed by its
columns. Each lab contains a 10-by-labindex local piece of D.

See Also randn MATLAB function reference page

cell, eye, false, Inf, NaN, ones, rand, sparse, speye, sprand,
sprandn, true, zeros

9-107

redistribute

Purpose Distribute array along different dimension

Syntax D2 = redistribute(D1)
D2 = redistribute(D1, dim)
D2 = redistribute(D1, dist)

Description D2 = redistribute(D1) redistributes a distributed array D1 with
its default distribution scheme. The distribution dimension dim is
the last nonsingleton dimension and the partition is that specified
by dcolonpartition(size(D1,dim)) along the size of D1 in the
distribution dimension.

D2 = redistribute(D1, dim) redistributes a distributed array
D1 along dimension dim. The partition is that specified by
dcolonpartition(size(D1, dim)). dim must be between 1 and
ndims(D1).

D2 = redistribute(D1, dist) redistributes a distributed array D1
using the distribution scheme specified by the distributor dist. If
dim=distribdim(dist) is not specified, the distribution dimension
dim is taken to be the last nonsingleton dimension. If PAR =
partition(dist) is not specified, the partition is that specified
by dcolonpartition(size(D1, dim)) along the size of D1 in the
distribution dimension.

Note that D = redistribute(redistribute(D, dist),
distributor(D)) returns the original distributed array D.

Examples Redistribute an array according to the distribution of another array.
First, create a magic square distributed by columns.

M = distribute(magic(10), distributor('partition', [1 2 3 4]));

Create a pascal matrix distributed by rows (first dimension).

P = distribute(pascal(10), 1);

9-108

redistribute

Redistribute the pascal matrix according to the distribution (partition)
of the magic square.

R = redistribute(P, distributor(M));

See Also darray, dcolonpartition, distribdim, distribute, distributor,
partition

9-109

resume

Purpose Resume processing queue in job manager

Syntax resume(jm)

Arguments jm Job manager object whose queue is resumed.

Description resume(jm) resumes processing of the job manager’s queue so that
jobs waiting in the queued state will be run. This call will do nothing
if the job manager is not paused.

See Also pause, waitForState

9-110

set

Purpose Configure or display object properties

Syntax set(obj)
props = set(obj)
set(obj,'PropertyName')
props = set(obj,'PropertyName')
set(obj,'PropertyName',PropertyValue,...)
set(obj,PN,PV)
set(obj,S)
set(obj,'configuration', 'ConfigurationName',...)

Arguments obj An object or an array of objects.

'PropertyName' A property name for obj.

PropertyValue A property value supported by
PropertyName.

PN A cell array of property names.

PV A cell array of property values.

props A structure array whose field names are the
property names for obj.

S A structure with property names and
property values.

'configuration' Literal string to indicate usage of a
configuration.

'ConfigurationName' Name of the configuration to use, defined in
distcompUserConfig.m.

Description set(obj) displays all configurable properties for obj. If a property has
a finite list of possible string values, these values are also displayed.

props = set(obj) returns all configurable properties for obj and their
possible values to the structure props. The field names of props are the
property names of obj, and the field values are cell arrays of possible

9-111

set

property values. If a property does not have a finite set of possible
values, its cell array is empty.

set(obj,'PropertyName') displays the valid values for PropertyName if
it possesses a finite list of string values.

props = set(obj,'PropertyName') returns the valid values for
PropertyName to props. props is a cell array of possible string values
or an empty cell array if PropertyName does not have a finite list of
possible values.

set(obj,'PropertyName',PropertyValue,...) configures one or more
property values with a single command.

set(obj,PN,PV) configures the properties specified in the cell array of
strings PN to the corresponding values in the cell array PV. PN must be a
vector. PV can be m-by-n, where m is equal to the number of objects in
obj and n is equal to the length of PN.

set(obj,S) configures the named properties to the specified values for
obj. S is a structure whose field names are object properties, and whose
field values are the values for the corresponding properties.

set(obj,'configuration', 'ConfigurationName',...) sets
the object properties with values specified in the configuration
ConfigurationName. Configurations are defined in the file
distcompUserConfig.m. For details about writing and applying
configurations, see “Programming with User Configurations” on page
2-5.

Remarks You can use any combination of property name/property value pairs,
structure arrays, and cell arrays in one call to set. Additionally, you
can specify a property name without regard to case, and you can make
use of property name completion. For example, if j1 is a job object, the
following commands are all valid and have the same result:

set(j1,'Timeout',20)
set(j1,'timeout',20)
set(j1,'timeo',20)

9-112

set

Examples This example illustrates some of the ways you can use set to configure
property values for the job object j1.

set(j1,'Name','Job_PT109','Timeout',60);

props1 = {'Name' 'Timeout'};
values1 = {'Job_PT109' 60};
set(j1, props1, values1);

S.Name = 'Job_PT109';
S.Timeout = 60;
set(j1,S);

See Also get, inspect

9-113

setupForParallelExecution

Purpose Set options for submitting parallel jobs on LSF

Syntax setupForParallelExecution(lsf_sched, 'pc')
setupForParallelExecution(lsf_sched, 'pcNoDelegate')
setupForParallelExecution(lsf_sched, 'unix')

Arguments lsf_sched LSF scheduler object.

'pc',
'pcNoDelegate',
'unix'

Setting for parallel execution.

Description setupForParallelExecution(lsf_sched, 'pc') sets up the scheduler
to expect Windows PC worker machines, and selects the wrapper script
which expects to be able to call "mpiexec -delegate" on the workers. Note
that you still need to supply SubmitArguments that ensure that LSF
schedules your job to run only on PC workers. For example, including
'-R type==NTX86' in your SubmitArguments causes the scheduler to
select only 32-bit Windows workers.

setupForParallelExecution(lsf_sched, 'pcNoDelegate') is similar
to the 'pc' mode, except that the wrapper script does not attempt to
call "mpiexec -delegate", and so assumes that you have installed
some other means of achieving authentication without passwords.

setupForParallelExecution(lsf_sched, 'unix') sets up the
scheduler to expect UNIX worker machines, and selects the
default wrapper script for UNIX workers. You still need to supply
SubmitArguments that ensure LSF schedules your job to run only on
UNIX workers. For example, including '-R type==LINUX64' in your
SubmitArguments causes the scheduler to select only 64-bit Linux
workers.

This function sets the values for the properties
ParallelSubmissionWrapperScript and ClusterOsType.

9-114

setupForParallelExecution

Examples From any client, set up the scheduler to run parallel jobs only on PC
workers.

lsf_sched = findResource('scheduler', 'Type', 'lsf');
setupForParallelExecution(lsf_sched, 'pc');
set(lsf_sched, 'SubmitArguments', '-R type==NTX86');

From any client, set up the scheduler to run parallel jobs only on UNIX
workers.

lsf_sched = findResource('scheduler', 'Type', 'lsf');
setupForParallelExecution(lsf_sched, 'unix');
set(lsf_sched, 'SubmitArguments', '-R type==LINUX64');

See Also createParallelJob, findResource

9-115

size

Purpose Size of object array

Syntax d = size(obj)
[m,n] = size(obj)
[m1,m2,m3,...,mn] = size(obj)
m = size(obj,dim)

Arguments obj An object or an array of objects.

dim The dimension of obj.

d The number of rows and columns in obj.

m The number of rows in obj, or the length of the
dimension specified by dim.

n The number of columns in obj.

m1,m2,m3,...,mn The lengths of the first n dimensions of obj.

Description d = size(obj) returns the two-element row vector d containing the
number of rows and columns in obj.

[m,n] = size(obj) returns the number of rows and columns in
separate output variables.

[m1,m2,m3,...,mn] = size(obj) returns the length of the first n
dimensions of obj.

m = size(obj,dim) returns the length of the dimension specified by
the scalar dim. For example, size(obj,1) returns the number of rows.

See Also length

9-116

sparse

Purpose Create distributed sparse matrix

Syntax D = sparse(m, n, dist)

Description D = sparse(m, n, dist) creates an m-by-n sparse distributed
array of underlying class double. D is distributed by dimension dim,
where dim = distribdim(dist) and with partition PAR, where PAR =
partition(dist). If dim is unspecified, then D is distributed by its last
nonsingleton dimension, or its second dimension if m and n are both 1
(D is scalar). If PAR is unspecified, then D uses dcolonpartition over
the size in dimension dim as its partition. The easiest way to do this
is to use a default distributor where both dim and PAR are unspecified
(dist = distributor()) as input to sparse.

Note To create a sparse distributed array of underlying class logical,
first create an array of underlying class double and then cast it using
the logical function:

logical(sparse(m, n, dist))

Examples With four labs,

D = sparse(1000, 1000, distributor())

creates a 1000-by-1000 distributed sparse double array D. D is
distributed by its second dimension (columns), and each lab contains a
1000-by-250 local piece of D.

D = sprand(10, 10, distributor('partition', 1:numlabs))

creates a 10-by-10 distributed sparse double array D, distributed by its
columns. Each lab contains a 10-by-labindex local piece of D.

9-117

sparse

See Also sparse MATLAB function reference page

cell, eye, false, Inf, NaN, ones, rand, randn, speye, sprand, sprandn,
true, zeros

9-118

speye

Purpose Create distributed sparse identity matrix

Syntax D = speye(n, dist)
D = speye(m, n, dist)
D = speye([m, n], dist)

Description D = speye(n, dist) creates an n-by-n sparse distributed array
of underlying class double. D is distributed by dimension dim,
where dim = distribdim(dist), and with partition PAR, where
par=partition(dist). If dim is unspecified, then D is distributed
by its second dimension. If PAR is unspecified, then D uses
dcolonpartition(n) as its partition. The easiest way to do this is
to use a default distributor where both dim and PAR are unspecified
(dist=distributor()) as input to speye.

D = speye(m, n, dist) and D = speye([m, n], dist) create an
m-by-n sparse distributed array of underlying class double. The
distribution dimension dim and partition PAR may be specified by
dist as above, but if they are not specified, dim is taken to be the last
nonsingleton dimension of D and PAR is provided by dcolonpartition
over the size in that dimension.

Note To create a sparse distributed array of underlying class logical,
first create an array of underlying class double and then cast it using
the logical function:

logical(speye(m, n, dist))

Examples With four labs,

D = speye(1000, distributor())

creates a 1000-by-1000 sparse distributed double array D, distributed
by its second dimension (columns). Each lab contains a 1000-by-250
local piece of D.

9-119

speye

D = speye(10, 10, distributor('partition', 1:numlabs))

creates a 10-by-10 sparse distributed double array D, distributed by its
columns. Each lab contains a 10-by-labindex local piece of D.

See Also speye MATLAB function reference page

cell, eye, false, Inf, NaN, ones, rand, randn, sparse, sprand,
sprandn, true, zeros

9-120

sprand

Purpose Create distributed sparse array of uniformly distributed pseudo-random
values

Syntax D = sprand(m, n, density, dist)

Description D = sprand(m, n, density, dist) creates an m-by-n sparse
distributed array with approximately density*m*n uniformly
distributed nonzero double entries. D is distributed by dimension dim,
where dim = distribdim(dist), and with partition PAR, where PAR =
partition(dist). If dim is unspecified, D is distributed by its second
dimension. If PAR is unspecified, D uses dcolonpartition(n) as its
partition. The easiest way to do this is to use a default distributor
where both dim and PAR are unspecified (dist = distributor()) as
input to sprandn.

Remarks When you use sprand in a distributed or parallel job (including pmode),
each worker or lab sets its random generator seed to a value that
depends only on the lab index or task ID. Therefore, the array on each
lab is unique for that job. However, if you repeat the job, you get the
same random data.

Examples With four labs,

D = sprand(1000, 1000, .001, distributor())

creates a 1000-by-1000 sparse distributed double array D with
approximately 1000 nonzeros. D is distributed by its second dimension
(columns), and each lab contains a 1000-by-250 local piece of D.

D = sprand(10, 10, .1, distributor('partition', 1:numlabs))

creates a 10-by-10 distributed double array D with approximately 10
nonzeros. D is distributed by its columns, and each lab contains a
10-by-labindex local piece of D.

9-121

sprand

See Also sprand MATLAB function reference page

cell, eye, false, Inf, NaN, ones, rand, randn, sparse, speye, sprandn,
true, zeros

9-122

sprandn

Purpose Create distributed sparse array of normally distributed random values

Syntax D = sprandn(m, n, density, dist)

Description D = sprandn(m, n, density, dist) creates an m-by-n sparse
distributed array with approximately density*m*n normally
distributed nonzero double entries. D is distributed by dimension dim,
where dim = distribdim(dist), and with partition PAR, where PAR =
partition(dist). If dim is unspecified, D is distributed by its second
dimension. If PAR is unspecified, D uses dcolonpartition(n) as its
partition. The easiest way to do this is to use a default distributor
where both dim and PAR are unspecified (dist = distributor()) as
input to sprandn.

Remarks When you use sprandn in a distributed or parallel job (including
pmode), each worker or lab sets its random generator seed to a value
that depends only on the lab index or task ID. Therefore, the array
on each lab is unique for that job. However, if you repeat the job, you
get the same random data.

Examples With four labs,

D = sprandn(1000, 1000, .001, distributor())

creates a 1000-by-1000 sparse distributed double array D with
approximately 1000 nonzeros. D is distributed by its second dimension
(columns), and each lab contains a 1000-by-250 local piece of D.

D = sprandn(10, 10, .1, distributor('partition', 1:numlabs))

creates a 10-by-10 distributed double array D with approximately 10
nonzeros. D is distributed by its columns, and each lab contains a
10-by-labindex local piece of D.

9-123

sprandn

See Also sprandn MATLAB function reference page

cell, eye, false, Inf, NaN, ones, rand, randn, sparse, speye, sprand,
true, zeros

9-124

submit

Purpose Queue job in scheduler

Syntax submit(obj)

Arguments obj Job object to be queued.

Description submit(obj) queues the job object, obj, in the scheduler queue. The
scheduler used for this job was determined when the job was created.

Remarks When a job contained in a scheduler is submitted, the job’s State
property is set to queued, and the job is added to the list of jobs waiting
to be executed.

The jobs in the waiting list are executed in a first in, first out manner;
that is, the order in which they were submitted, except when the
sequence is altered by promote, demote, cancel, or destroy.

Examples Find the job manager named jobmanager1 using the lookup service
on host JobMgrHost.

jm1 = findResource('scheduler','type','jobmanager', ...
'name','jobmanager1','LookupURL','JobMgrHost');

Create a job object.

j1 = createJob(jm1);

Add a task object to be evaluated for the job.

t1 = createTask(j1, @myfunction, 1, {10, 10});

Queue the job object in the job manager.

submit(j1);

See Also createJob, findJob

9-125

taskFinish

Purpose M-file for user-defined options to run when task finishes

Syntax taskFinish(task)

Arguments task The task being evaluated by the worker.

Description taskFinish(task) runs automatically on a worker each time the
worker finishes evaluating a task for a particular job. You do not call
this function from the client session, nor explicitly as part of a task
function.

The function M-file resides in the worker’s MATLAB installation at

matlabroot/toolbox/distcomp/user/taskFinish.m

You add M-code to the file to define task finalization actions to be
performed on the worker every time it finishes evaluating a task for
this job.

Alternatively, you can create a file called taskFinish.m and include it
as part of the job’s FileDependencies property. The version of the file
in FileDependencies takes precedence over the version in the worker’s
MATLAB installation.

For further detail, see the text in the installed taskFinish.m file.

See Also Functions

jobStartup, taskStartup

Properties

FileDependencies

9-126

taskStartup

Purpose M-file for user-defined options to run when task starts

Syntax taskStartup(task)

Arguments task The task being evaluated by the worker.

Description taskStartup(task) runs automatically on a worker each time the
worker evaluates a task for a particular job. You do not call this function
from the client session, nor explicitly as part of a task function.

The function M-file resides in the worker’s MATLAB installation at

matlabroot/toolbox/distcomp/user/taskStartup.m

You add M-code to the file to define task initialization actions to be
performed on the worker every time it evaluates a task for this job.

Alternatively, you can create a file called taskStartup.m and include it
as part of the job’s FileDependencies property. The version of the file
in FileDependencies takes precedence over the version in the worker’s
MATLAB installation.

For further detail, see the text in the installed taskStartup.m file.

See Also Functions

jobStartup, taskFinish

Properties

FileDependencies

9-127

true

Purpose Create distributed true array

Syntax T = true(n, dist)
T = true(m, n, dist)
T = true([m, n], dist)

Description T = true(n, dist) creates an n-by-n distributed array of
underlying class logical. T is distributed by dimension dim, where
dim = distribdim(dist), and with partition PAR, where PAR
= partition(dist). If dim is unspecified, then T is distributed
by its second dimension. If PAR is unspecified, then T uses
dcolonpartition(n) as its partition. The easiest way to do this is to
use a default distributor where both dim and PAR are unspecified (dist
= distributor()) as input to true.

T = true(m, n, dist) and T = true([m, n], dist) create an
m-by-n distributed array of underlying class logical. The distribution
dimension dim and partition PAR can be specified by dist as above,
but if they are not specified, dim is taken to be the last nonsingleton
dimension of T, and PAR is provided by dcolonpartition over the size
in that dimension.

Examples With four labs,

T = true(1000, distributor())

creates a 1000-by-1000 distributed double array T, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of T.

T = true(10, 10, distributor('partition', 1:numlabs))

creates a 10-by-10 distributed logical array T, distributed by its columns.
Each lab contains a 10-by-labindex local piece of T.

9-128

true

See Also true MATLAB function reference page

cell, eye, false, Inf, NaN, ones, rand, randn, sparse, speye, sprand,
sprandn, zeros

9-129

waitForState

Purpose Wait for object to change state

Syntax waitForState(obj)
waitForState(obj, 'state')
waitForState(obj, 'state', timeout)

Arguments obj Job or task object whose change in state to wait for.

'state' Value of the object’s State property to wait for.

timeout Maximum time to wait, in seconds.

Description waitForState(obj) blocks execution in the client session until the
job or task identified by the object obj reaches the 'finished' state
or fails. For a job object, this occurs when all its tasks are finished
processing on remote workers.

waitForState(obj, 'state') blocks execution in the client session
until the specified object changes state to the value of 'state'. For a
job object, the valid states to wait for are 'queued', 'running', and
'finished'. For a task object, the valid states are 'running' and
'finished'.

If the object is currently or has already been in the specified state, a
wait is not performed and execution returns immediately. For example,
if you execute waitForState(job, 'queued') for job already in the
'finished' state, the call returns immediately.

waitForState(obj, 'state', timeout) blocks execution until either
the object reaches the specified 'state', or timeout seconds elapse,
whichever happens first.

Examples Submit a job to the queue, and wait for it to finish running before
retrieving its results.

submit(job)
waitForState(job, 'finished')
results = getAllOutputArguments(job)

9-130

waitForState

See Also pause, resume

9-131

zeros

Purpose Create distributed array of 0s

Syntax D = zeros(n, dist)
D = zeros(m, n, dist)
D = zeros([m, n], dist)
D = zeros(..., classname, dist)

Description D = zeros(n, dist) creates an n-by-n distributed array of
underlying class double. D is distributed by dimension dim, where
dim = distribdim(dist), and with partition PAR, where PAR
= partition(dist). If dim is unspecified, then D is distributed
by its second dimension. If PAR is unspecified, then D uses
dcolonpartition(n) as its partition. The easiest way to do this is to
use a default distributor where both dim and PAR are unspecified (dist
= distributor()) as input to eye.

D = zeros(m, n, dist) and D = zeros([m, n], dist) create an
m-by-n distributed array of underlying class double. The distribution
dimension dim and partition PAR can be specified by dist as above,
but if they are not specified, dim is taken to be the last nonsingleton
dimension of D, and PAR is provided by dcolonpartition over the size
in that dimension.

D = zeros(..., classname, dist) optionally specifies the class of
the distributed array D. Valid choices are the same as for the regular
zeros function: 'double' (the default), 'single', 'int8', 'uint8',
'int16', 'uint16', 'int32', 'uint32', 'int64', and 'uint64'.

Examples With four labs,

D = zeros(1000, distributor())

creates a 1000-by-1000 distributed double array D, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of D.

9-132

zeros

D = zeros(10, 10, 'uint16', distributor('partition', 1:numlabs))

creates a 10-by-10 distributed uint16 array D, distributed by its
columns. Each lab contains a 10-by-labindex local piece of D.

See Also zeros MATLAB function reference page

cell, eye, false, Inf, NaN, ones, rand, randn, sparse, speye, sprand,
sprandn, true

9-133

10

Properties — By Category

Job Manager Properties (p. 10-2) Control job manager objects

Scheduler Properties (p. 10-2) Control scheduler objects

Job Properties (p. 10-4) Control job objects

Task Properties (p. 10-5) Control task objects

Worker Properties (p. 10-6) Control worker objects

10 Properties — By Category

Job Manager Properties
BusyWorkers Workers currently running tasks

Configuration Specify configuration to apply to
object or toolbox function

HostAddress IP address of host running job
manager or worker session

HostName Name of host running job manager
or worker session

IdleWorkers Idle workers available to run tasks

Jobs Jobs contained in job manager
service or in scheduler’s data
location

Name Name of job manager, job, or worker
object

NumberOfBusyWorkers Number of workers currently
running tasks

NumberOfIdleWorkers Number of idle workers available to
run tasks

State Current state of task, job, job
manager, or worker

Scheduler Properties
ClusterMatlabRoot Specify MATLAB root for cluster

ClusterName Name of LSF cluster

ClusterOsType Specify operating system of nodes
on which LSF, CCS, or generic
scheduler will start labs

Configuration Specify configuration to apply to
object or toolbox function

10-2

Scheduler Properties

DataLocation Specify directory where job data is
stored

EnvironmentSetMethod Specify means of setting
environment variables for mpiexec
scheduler

HasSharedFilesystem Specify whether nodes share data
location

Jobs Jobs contained in job manager
service or in scheduler’s data
location

MasterName Name of LSF master node

MatlabCommandToRun MATLAB command that generic
scheduler runs to start lab

MpiexecFileName Specify pathname of executable
mpiexec command

ParallelSubmissionWrapperScript Script LSF scheduler runs to start
labs

ParallelSubmitFcn Specify function to run when parallel
job submitted to generic scheduler

SchedulerHostname Name of host running CCS scheduler

SubmitArguments Specify additional arguments to
use when submitting job to LSF or
mpiexec scheduler

SubmitFcn Specify function to run when job
submitted to generic scheduler

Type Type of object

WorkerMachineOsType Specify operating system of nodes on
which mpiexec scheduler will start
labs

10-3

10 Properties — By Category

Job Properties
Configuration Specify configuration to apply to

object or toolbox function

CreateTime When task or job was created

FileDependencies Directories and files that worker can
access

FinishedFcn Specify callback to execute after task
or job runs

FinishTime When task or job finished

ID Object identifier

JobData Data made available to all workers
for job’s tasks

MaximumNumberOfWorkers Specify maximum number of
workers to perform job tasks

MinimumNumberOfWorkers Specify minimum number of workers
to perform job tasks

Name Name of job manager, job, or worker
object

Parent Parent object of job or task

PathDependencies Specify directories to add to
MATLAB worker path

QueuedFcn Specify M-file function to execute
when job is submitted to job manager
queue

RestartWorker Specify whether to restart MATLAB
workers before evaluating job tasks

RunningFcn Specify M-file function to execute
when job or task starts running

StartTime When job or task started

State Current state of task, job, job
manager, or worker

10-4

Task Properties

SubmitArguments Specify additional arguments to
use when submitting job to LSF or
mpiexec scheduler

Tag Specify label to associate with job
object

Tasks Tasks contained in job object

Timeout Specify time limit to complete task
or job

Type Type of object

UserData Specify data to associate with job or
task object

UserName User who created job

Task Properties
CaptureCommandWindowOutput Specify whether to return Command

Window output

CommandWindowOutput Text produced by execution of task
object’s function

Configuration Specify configuration to apply to
object or toolbox function

CreateTime When task or job was created

ErrorIdentifier Task error identifier

ErrorMessage Message from task error

FinishedFcn Specify callback to execute after task
or job runs

FinishTime When task or job finished

Function Function called when evaluating
task

ID Object identifier

10-5

10 Properties — By Category

InputArguments Input arguments to task object

NumberOfOutputArguments Number of arguments returned by
task function

OutputArguments Data returned from execution of task

Parent Parent object of job or task

RunningFcn Specify M-file function to execute
when job or task starts running

StartTime When job or task started

State Current state of task, job, job
manager, or worker

Timeout Specify time limit to complete task
or job

Type Type of object

UserData Specify data to associate with job or
task object

Worker Worker session that performed task

Worker Properties
CurrentJob Job whose task this worker session

is currently evaluating

CurrentTask Task that worker is currently
running

HostAddress IP address of host running job
manager or worker session

HostName Name of host running job manager
or worker session

Name Name of job manager, job, or worker
object

10-6

Worker Properties

PreviousJob Job whose task this worker
previously ran

PreviousTask Task that this worker previously ran

State Current state of task, job, job
manager, or worker

10-7

10 Properties — By Category

10-8

11

Properties — Alphabetical
List

BusyWorkers

Purpose Workers currently running tasks

Description The BusyWorkers property value indicates which workers are currently
running tasks for the job manager.

Characteristics Usage Job manager object

Read-only Always

Data type Array of worker objects

Values As workers complete tasks and assume new ones, the lists of workers
in BusyWorkers and IdleWorkers can change rapidly. If you examine
these two properties at different times, you might see the same worker
on both lists if that worker has changed its status between those times.

If a worker stops unexpectedly, the job manager’s knowledge of that as a
busy or idle worker does not get updated until the job manager runs the
next job and tries to send a task to that worker.

Examples Examine the workers currently running tasks for a particular job
manager.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

workers_running_tasks = get(jm, 'BusyWorkers')

See Also Properties

IdleWorkers, MaximumNumberOfWorkers, MinimumNumberOfWorkers,
NumberOfBusyWorkers, NumberOfIdleWorkers

11-2

CaptureCommandWindowOutput

Purpose Specify whether to return Command Window output

Description CaptureCommandWindowOutput specifies whether to return command
window output for the evaluation of a task object’s Function property.

If CaptureCommandWindowOutput is set true (or logical 1), the command
window output will be stored in the CommandWindowOutput property of
the task object. If the value is set false (or logical 0), the task does not
retain command window output.

Characteristics Usage Task object

Read-only While task is running or finished

Data type Logical

Values The value of CaptureCommandWindowOutput can be set to true (or
logical 1) or false (or logical 0). When you perform get on the property,
the value returned is logical 1 or logical 0. The default value is logical 0
to save network bandwidth in situations where the output is not needed.

Examples Set all tasks in a job to retain any command window output generated
during task evaluation.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
createTask(j, @myfun, 1, {x});
createTask(j, @myfun, 1, {x});
.
.
.
alltasks = get(j, 'Tasks');
set(alltasks, 'CaptureCommandWindowOutput', true)

11-3

CaptureCommandWindowOutput

See Also Properties

Function, CommandWindowOutput

11-4

ClusterMatlabRoot

Purpose Specify MATLAB root for cluster

Description ClusterMatlabRoot specifies the pathname to MATLAB for the cluster
to use for starting MATLAB worker processes. The path must be
available from all nodes on which worker sessions will run. For a
generic scheduler interface, you should prefix ClusterMatlabRoot to
MatlabCommandToRun.

Characteristics Usage Scheduler object

Read-only Never

Data type String

Values ClusterMatlabRoot is a string. It must be structured appropriately for
the file system of the cluster nodes. The directory must be accessible
as expressed in this string, from all cluster nodes on which MATLAB
workers will run. If the value is empty, the MATLAB executable must
be on the path of the worker.

See Also Properties

DataLocation, MasterName, MatlabCommandToRun, PathDependencies

11-5

ClusterName

Purpose Name of LSF cluster

Description ClusterName indicates the name of the LSF cluster on which this
scheduler will run your jobs.

Characteristics Usage LSF Scheduler object

Read-only Always

Data type String

See Also Properties

DataLocation, MasterName, PathDependencies

11-6

ClusterOsType

Purpose Specify operating system of nodes on which LSF, CCS, or generic
scheduler will start labs

Description ClusterOsType specifies the operating system of the nodes on which
an LSF, CCS, or generic scheduler will start labs for the running of a
parallel job.

Characteristics Usage LSF, CCS, or generic scheduler object

Read-only Never

Data type String

Values The only value the property can have is 'pc' or 'unix'. For CCS, the
setting must be 'pc'. The nodes of the labs running an LSF, CCS, or
generic scheduler job must all be the same platform.

For LSF, this property value is set when you execute the function
setupForParallelExecution, so you do not need to set the value
directly.

See Also Functions

createParallelJob, findResource, setupForParallelExecution

Properties

ClusterName, MasterName, SchedulerHostname

11-7

CommandWindowOutput

Purpose Text produced by execution of task object’s function

Description CommandWindowOutput contains the text produced during the execution
of a task object’s Function property that would normally be printed to
the MATLAB Command Window.

For example, if the function specified in the Function property
makes calls to the disp command, the output that would normally be
printed to the Command Window on the worker is captured in the
CommandWindowOutput property.

Whether to store the CommandWindowOutput is specified
using the CaptureCommandWindowOutput property. The
CaptureCommandWindowOutput property by default is logical 0 to save
network bandwidth in situations when the CommandWindowOutput is
not needed.

Characteristics Usage Task object

Read-only Always

Data type String

Values Before a task is evaluated, the default value of CommandWindowOutput
is an empty string.

Examples Get the Command Window output from all tasks in a job.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
createTask(j, @myfun, 1, {x});
createTask(j, @myfun, 1, {x});
.
.
alltasks = get(j, 'Tasks')
set(alltasks, 'CaptureCommandWindowOutput', true)

11-8

CommandWindowOutput

submit(j)
outputmessages = get(alltasks, 'CommandWindowOutput')

See Also Properties

Function, CaptureCommandWindowOutput

11-9

Configuration

Purpose Specify configuration to apply to object or toolbox function

Description You use the Configuration property to apply a configuration to an
object. The configuration is defined in the distcompUserConfig.m
file. For details about writing and applying configurations, see
“Programming with User Configurations” on page 2-5.

Setting the Configuration property causes all the applicable properties
defined in the configuration to be set on the object.

Characteristics Usage Scheduler, job, or task object

Read-only Never

Data type String

Values The value of Configuration is a string that matches the name of a
configuration in the file distcompUserConfig.m. If a configuration
was never applied to the object, or if any of the settable object
properties have been changed since a configuration was applied, the
Configuration property is set to an empty string.

Examples Use a configuration to find a scheduler.

jm = findResource('scheduler','configuration','myConfig')

Use a configuration when creating a job object.

job1 = createJob(jm,'Configuration','jobmanager')

Apply a configuration to an existing job object.

job2 = createJob(jm)
set(job2,'Configuration','myjobconfig')

11-10

Configuration

See Also Functions

createJob, createParallelJob, createTask, dfeval, dfevalasync,
findResource

11-11

CreateTime

Purpose When task or job was created

Description CreateTime holds a date number specifying the time when a task or job
was created, in the format 'day mon dd hh:mm:ss tz yyyy'.

Characteristics Usage Task object or job object

Read-only Always

Data type String

Values CreateTime is assigned the job manager’s system time when a task
or job is created.

Examples Create a job, then get its CreateTime.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
get(j,'CreateTime')
ans =
Mon Jun 28 10:13:47 EDT 2004

See Also Functions

createJob, createTask

Properties

FinishTime, StartTime, SubmitTime

11-12

CurrentJob

Purpose Job whose task this worker session is currently evaluating

Description CurrentJob indicates the job whose task the worker is evaluating at
the present time.

Characteristics Usage Worker object

Read-only Always

Data type Job object

Values CurrentJob is an empty vector while the worker is not evaluating
a task.

See Also Properties

CurrentTask, PreviousJob, PreviousTask, Worker

11-13

CurrentTask

Purpose Task that worker is currently running

Description CurrentTask indicates the task that the worker is evaluating at the
present time.

Characteristics Usage Worker object

Read-only Always

Data type Task object

Values CurrentTask is an empty vector while the worker is not evaluating
a task.

See Also Properties

CurrentJob, PreviousJob, PreviousTask, Worker

11-14

DataLocation

Purpose Specify directory where job data is stored

Description DataLocation identifies where the job data is located.

Characteristics Usage Scheduler object

Read-only Never

Data type String or struct

Values DataLocation is a string or structure specifying a pathname for the job
data. In a shared file system, the client, scheduler, and all worker nodes
must have access to this location. In a nonshared file system, only the
MATLAB client and scheduler access job data in this location.

If DataLocation is not set, the default location for job data is the
current working directory of the MATLAB client the first time you use
findResource to create an object for this type of scheduler. All settable
property values on a scheduler object are local to the MATLAB client,
and are lost when you close the client session or when you remove the
object from the client workspace with delete or clear all.

Use a structure to specify the DataLocation in an environment of
mixed platforms. The fields for the structure are named pc and unix.
Each node then uses the field appropriate for its platform. See the
examples below.

Examples Set the DataLocation property for a UNIX cluster.

sch = findResource('scheduler','name','LSF')
set(sch, 'DataLocation','/depot/jobdata')

11-15

DataLocation

Use a structure to set the DataLocation property for a mixed platform
cluster.

d = struct('pc', '\\ourdomain\depot\jobdata', ...
'unix', '/depot/jobdata')

set(sch, 'DataLocation', d)

See Also Properties

HasSharedFilesystem, PathDependencies

11-16

EnvironmentSetMethod

Purpose Specify means of setting environment variables for mpiexec scheduler

Description The mpiexec scheduler needs to supply environment variables to the
MATLAB processes (labs) that it launches. There are two means
by which it can do this, determined by the EnvironmentSetMethod
property.

Characteristics Usage mpiexec scheduler object

Read-only Never

Data type String

Values A value of '-env' instructs the mpiexec scheduler to insert into the
mpiexec command line additional directives of the form -env VARNAME
value.

A value of 'setenv' instructs the mpiexec scheduler to set the
environment variables in the environment that launches mpiexec.

11-17

ErrorIdentifier

Purpose Task error identifier

Description ErrorIdentifier contains the identifier output from execution of the
lasterror command if an error occurs during the task evaluation.

Characteristics Usage Task object

Read-only Always

Data type String

Values ErrorIdentifier is empty before an attempt to run a task.
ErrorIdentifier remains empty if the evaluation of a task object’s
function does not produce an error or if the error did not provide an
identifier.

See Also Properties

ErrorMessage, Function

11-18

ErrorMessage

Purpose Message from task error

Description ErrorMessage contains the message output from execution of the
lasterror command if an error occurs during the task evaluation.

Characteristics Usage Task object

Read-only Always

Data type String

Values ErrorMessage is empty before an attempt to run a task. ErrorMessage
remains empty if the evaluation of a task object’s function does not
produce an error.

Examples Retrieve the error message from a task object.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
a = [1 2 3 4]; %Note: matrix not square
t = createTask(j, @inv, 1, {a});
submit(j)
get(t,'ErrorMessage')
ans =
Error using ==> inv
Matrix must be square.

See Also Properties

ErrorIdentifier, Function

11-19

FileDependencies

Purpose Directories and files that worker can access

Description FileDependencies contains a list of directories and files that the
worker will need to access for evaluating a job’s tasks.

The value of the property is defined by the client session. You set the
value for the property as a cell array of strings. Each string is an
absolute or relative pathname to a directory or file. The toolbox makes
a zip file of all the files and directories referenced in the property, and
stores it on the job manager machine.

The first time a worker evaluates a task for a particular job, the job
manager passes to the worker the zip file of the files and directories in
the FileDependencies property. On the worker, the file is unzipped, and
a directory structure is created that is exactly the same as that accessed
on the client machine where the property was set. Those entries listed
in the property value are added to the path in the MATLAB worker
session. (The subdirectories of the entries are not added to the path,
even though they are included in the directory structure.)

When the worker runs subsequent tasks for the same job, it uses the
directory structure already set up by the job’s FileDependencies
property for the first task it ran for that job.

Characteristics Usage Job object

Read-only After job is submitted

Data type Cell array of strings

Values The value of FileDependencies is empty by default. If a pathname that
does not exist is specified for the property value, an error is generated.

Examples Make available to a job’s workers the contents of the directories fd1
and fd2, and the file fdfile1.m.

set(job1,'FileDependencies',{'fd1' 'fd2' 'fdfile1.m'})
get(job1,'FileDependencies')

11-20

FileDependencies

ans =
'fd1'
'fd2'
'fdfile1.m'

See Also Functions

getFileDependencyDir, jobStartup, taskFinish, taskStartup

11-21

FinishedFcn

Purpose Specify callback to execute after task or job runs

Description The callback will be executed in the local MATLAB session, that is, the
session that sets the property, the MATLAB client.

Characteristics Usage Task object or job object

Read-only Never

Data type Callback

Values FinishedFcn can be set to any valid MATLAB callback value.

The callback follows the same model as callbacks for Handle Graphics®,
passing to the callback function the object (job or task) that makes the
call and an empty argument of event data.

Examples Create a job and set its FinishedFcn property using a function handle
to an anonymous function that sends information to the display.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm, 'Name', 'Job_52a');

set(j, 'FinishedFcn', ...
@(job,eventdata) disp([job.Name ' ' job.State]));

Create a task whose FinishFcn is a function handle to a separate
function.

createTask(j, @rand, 1, {2,4}, ...
'FinishedFcn', @clientTaskCompleted);

11-22

FinishedFcn

Create the function clientTaskCompleted.m on the path of the MATLAB
client.

function clientTaskCompleted(task,eventdata)
disp(['Finished task: ' num2str(task.ID)])

Run the job and note the output messages from the job and task
FinishedFcn callbacks.

submit(j)
Finished task: 1
Job_52a finished

See Also Properties

QueuedFcn, RunningFcn

11-23

FinishTime

Purpose When task or job finished

Description FinishTime holds a date number specifying the time when a task or job
finished executing, in the format 'day mon dd hh:mm:ss tz yyyy'.

If a task or job is stopped or is aborted due to an error condition,
FinishTime will hold the time when the task or job was stopped or
aborted.

Characteristics Usage Task object or job object

Read-only Always

Data type String

Values FinishTime is assigned the job manager’s system time when the task
or job has finished.

Examples Create and submit a job, then get its StartTime and FinishTime.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
t1 = createTask(j, @rand, 1, {12,12});
t2 = createTask(j, @rand, 1, {12,12});
t3 = createTask(j, @rand, 1, {12,12});
t4 = createTask(j, @rand, 1, {12,12});
submit(j)
waitForState(j,'finished')
get(j,'StartTime')
ans =
Mon Jun 21 10:02:17 EDT 2004
get(j,'FinishTime')
ans =
Mon Jun 21 10:02:52 EDT 2004

11-24

FinishTime

See Also Functions

cancel, submit

Properties

CreateTime, StartTime, SubmitTime

11-25

Function

Purpose Function called when evaluating task

Description Function indicates the function performed in the evaluation of a task.
You set the function when you create the task using createTask.

Characteristics Usage Task object

Read-only While task is running or finished

Data type String or function handle

See Also Functions

createTask

Properties

InputArguments, NumberOfOutputArguments, OutputArguments

11-26

HasSharedFilesystem

Purpose Specify whether nodes share data location

Description HasSharedFilesystem determines whether the job data stored in
the location identified by the DataLocation property can be accessed
from all nodes in the cluster. If HasSharedFilesystem is false (0),
the scheduler handles data transfers to and from the worker nodes.
If HasSharedFilesystem is true (1), the workers access the job data
directly.

Characteristics Usage Scheduler object

Read-only Never

Data type Logical

Values The value of HasSharedFilesystem can be set to true (or logical 1) or
false (or logical 0). When you perform get on the property, the value
returned is logical 1 or logical 0.

See Also Properties

DataLocation, FileDependencies, PathDependencies

11-27

HostAddress

Purpose IP address of host running job manager or worker session

Description HostAddress indicates the numerical IP address of the computer
running the job manager or worker session to which the job manager
object or worker object refers. You can match the HostAddress property
to find a desired job manager or worker when creating an object with
findResource.

Characteristics Usage Job manager object or worker object

Read-only Always

Data type Cell array of strings

Examples Create a job manager object and examine its HostAddress property.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

get(jm, 'HostAddress')
ans =

123.123.123.123

See Also Functions

findResource

Properties

HostName

11-28

HostName

Purpose Name of host running job manager or worker session

Description You can match the HostName property to find a desired job manager
or worker when creating the job manager or worker object with
findResource.

Characteristics Usage Job manager object or worker object

Read-only Always

Data type String

Examples Create a job manager object and examine its HostName property.

jm = findResource('scheduler','type','jobmanager', ...
'Name', 'MyJobManager')

get(jm, 'HostName')
ans =
JobMgrHost

See Also Functions

findResource

Properties

HostAddress

11-29

ID

Purpose Object identifier

Description Each object has a unique identifier within its parent object. The ID
value is assigned at the time of object creation. You can use the ID
property value to distinguish one object from another, such as different
tasks in the same job.

Characteristics Usage Job object or task object

Read-only Always

Data type Double

Values The first job created in a job manager has the ID value of 1, and jobs are
assigned ID values in numerical sequence as they are created after that.

The first task created in a job has the ID value of 1, and tasks are
assigned ID values in numerical sequence as they are created after that.

Examples Examine the ID property of different objects.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm)
createTask(j, @rand, 1, {2,4});
createTask(j, @rand, 1, {2,4});
tasks = get(j, 'Tasks');
get(tasks, 'ID')
ans =

[1]
[2]

The ID values are the only unique properties distinguishing these two
tasks.

11-30

ID

See Also Functions

createJob, createTask

Properties

Jobs, Tasks

11-31

IdleWorkers

Purpose Idle workers available to run tasks

Description The IdleWorkers property value indicates which workers are currently
available to the job manager for the performance of job tasks.

Characteristics Usage Job manager object

Read-only Always

Data type Array of worker objects

Values As workers complete tasks and assume new ones, the lists of workers
in BusyWorkers and IdleWorkers can change rapidly. If you examine
these two properties at different times, you might see the same worker
on both lists if that worker has changed its status between those times.

If a worker stops unexpectedly, the job manager’s knowledge of that as a
busy or idle worker does not get updated until the job manager runs the
next job and tries to send a task to that worker.

Examples Examine which workers are available to a job manager for immediate
use to perform tasks.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

get(jm, 'NumberOfIdleWorkers')

See Also Properties

BusyWorkers, MaximumNumberOfWorkers, MinimumNumberOfWorkers,
NumberOfBusyWorkers, NumberOfIdleWorkers

11-32

InputArguments

Purpose Input arguments to task object

Description InputArguments is a 1-by-N cell array in which each element is an
expected input argument to the task function. You specify the input
arguments when you create a task with the createTask function.

Characteristics Usage Task object

Read-only While task is running or finished

Data type Cell array

Values The forms and values of the input arguments are totally dependent
on the task function.

Examples Create a task requiring two input arguments, then examine the task’s
InputArguments property.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
t = createTask(j, @rand, 1, {2, 4});
get(t, 'InputArguments')
ans =

[2] [4]

See Also Functions

createTask

Properties

Function, OutputArguments

11-33

JobData

Purpose Data made available to all workers for job’s tasks

Description The JobData property holds data that eventually gets stored in the local
memory of the worker machines, so that it does not have to be passed
to the worker for each task in a job that the worker evaluates. Passing
the data only once per job to each worker is more efficient than passing
data with each task.

Note, that to access the data contained in a job’s JobData property,
the worker session evaluating the task needs to have access to the job,
which it gets from a call to the function getCurrentJob, as discussed in
the example below.

Characteristics Usage Job object

Read-only After job is submitted

Data type Any type

Values JobData is an empty vector by default.

Examples Create job1 and set its JobData property value to the contents of
array1.

job1 = createJob(jm)
set(job1, 'JobData', array1)
createTask(job1, @myfunction, 1, {task_data})

Now the contents of array1 will be available to all the tasks in the job.
Because the job itself must be accessible to the tasks, myfunction must
include a call to the function getCurrentJob. That is, the task function
myfunction needs to call getCurrentJob to get the job object through
which it can get the JobData property.

See Also Functions

createJob, createTask

11-34

Jobs

Purpose Jobs contained in job manager service or in scheduler’s data location

Description The Jobs property contains an array of all the job objects in a job
manager, whether the jobs are pending, queued, running, or finished.
Job objects will be categorized by their State property and job objects
in the 'queued' state will be displayed in the order in which they are
queued, with the next job to execute at the top (first).

Characteristics Usage Job manager or scheduler object

Read-only Always

Data type Array of job objects

Examples Examine the Jobs property for a job manager, and use the resulting
array of objects to set property values.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j1 = createJob(jm);
j2 = createJob(jm);
j3 = createJob(jm);
j4 = createJob(jm);
.
.
.
all_jobs = get(jm, 'Jobs')
set(all_jobs, 'MaximumNumberOfWorkers', 10);

The last line of code sets the MaximumNumberOfWorkers property value
to 10 for each of the job objects in the array all_jobs.

11-35

Jobs

See Also Functions

createJob, destroy, findJob, submit

Properties

Tasks

11-36

MasterName

Purpose Name of LSF master node

Description MasterName indicates the name of the LSF cluster master node.

Characteristics Usage LSF scheduler object

Read-only Always

Data type String

Values MasterName is a string of the full name of the master node.

See Also Properties

ClusterName

11-37

MatlabCommandToRun

Purpose MATLAB command that generic scheduler runs to start lab

Description MatlabCommandToRun indicates the command that the scheduler should
send to a worker to start MATLAB for a task evaluation. To ensure that
the correct MATLAB runs, MatlabCommandToRun should be prefixed by
ClusterMatlabRoot.

Characteristics Usage Generic scheduler object

Read-only Always

Data type String

Values MatlabCommandToRun is set by the toolbox when the scheduler object
is created.

See Also Properties

ClusterMatlabRoot, SubmitFcn

11-38

MaximumNumberOfWorkers

Purpose Specify maximum number of workers to perform job tasks

Description With MaximumNumberOfWorkers you specify the greatest number of
workers to be used to perform the evaluation of the job’s tasks at any one
time. Tasks may be distributed to different workers at different times
during execution of the job, so that more than MaximumNumberOfWorkers
might be used for the whole job, but this property limits the portion of
the cluster used for the job at any one time.

Characteristics Usage Job object

Read-only After job is submitted

Data type Double

Values You can set the value to anything equal to or greater than the value of
the MinimumNumberOfWorkers property.

Examples Set the maximum number of workers to perform a job.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
set(j, 'MaximumNumberOfWorkers', 12);

In this example, the job will use no more than 12 workers, regardless
of how many tasks are in the job and how many workers are available
on the cluster.

See Also Properties

BusyWorkers, IdleWorkers, MinimumNumberOfWorkers,
NumberOfBusyWorkers, NumberOfIdleWorkers

11-39

MinimumNumberOfWorkers

Purpose Specify minimum number of workers to perform job tasks

Description With MinimumNumberOfWorkers you specify the minimum number
of workers to perform the evaluation of the job’s tasks. When the
job is queued, it will not run until at least this many workers are
simultaneously available.

If MinimumNumberOfWorkers workers are available to the job manager,
but some of the task dispatches fail due to network or node failures,
such that the number of tasks actually dispatched is less than
MinimumNumberOfWorkers, the job will be canceled.

Characteristics Usage Job object

Read-only After job is submitted

Data type Double

Values The default value is 1. You can set the value anywhere from 1 up to or
equal to the value of the MaximumNumberOfWorkers property.

Examples Set the minimum number of workers to perform a job.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
set(j, 'MinimumNumberOfWorkers', 6);

In this example, when the job is queued, it will not begin running tasks
until at least six workers are available to perform task evaluations.

See Also Properties

BusyWorkers, IdleWorkers, MaximumNumberOfWorkers,
NumberOfBusyWorkers, NumberOfIdleWorkers

11-40

MpiexecFileName

Purpose Specify pathname of executable mpiexec command

Description MpiexecFileName specifies which mpiexec command is executed to
run your jobs.

Characteristics Usage mpiexec scheduler object

Read-only Never

Data type String

Remarks See your network administrator to find out which mpiexec you should
run. The default value of the property points the mpiexec included in
your MATLAB installation.

See Also Functions

mpiLibConf, mpiSettings

Properties

SubmitArguments

11-41

Name

Purpose Name of job manager, job, or worker object

Description The descriptive name of a job manager or worker is set when its
service is started, as described in "Customizing Engine Services" in
the MATLAB Distributed Computing Engine System Administrator’s
Guide. This is reflected in the Name property of the object that
represents the service. You can use the name of the job manager or
worker service to search for the particular service when creating an
object with the findResource function.

You can configure Name as a descriptive name for a job object at any
time before the job is submitted to the queue.

Characteristics Usage Job manager object, job object, or worker object

Read-only Always for a job manager or worker object; after
job object is submitted

Data type String

Values By default, a job object is constructed with a Name created by
concatenating the Name of the job manager with _job.

Examples Construct a job manager object by searching for the name of the service
you want to use.

jm = findResource('jobmanager','Name','MyJobManager');

Construct a job and note its default Name.

j = createJob(jm);
get(j, 'Name')
ans =

MyJobManager_job

11-42

Name

Change the job’s Name property and verify the new setting.

set(j,'Name','MyJob')
get(j,'Name')
ans =

MyJob

See Also Functions

findResource, createJob

11-43

NumberOfBusyWorkers

Purpose Number of workers currently running tasks

Description The NumberOfBusyWorkers property value indicates how many workers
are currently running tasks for the job manager.

Characteristics Usage Job manager object

Read-only Always

Data type Double

Values The value of NumberOfBusyWorkers can range from 0 up to the total
number of workers registered with the job manager.

Examples Examine the number of workers currently running tasks for a job
manager.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

get(jm, 'NumberOfBusyWorkers')

See Also Properties

BusyWorkers, IdleWorkers, MaximumNumberOfWorkers,
MinimumNumberOfWorkers, NumberOfIdleWorkers

11-44

NumberOfIdleWorkers

Purpose Number of idle workers available to run tasks

Description The NumberOfIdleWorkers property value indicates how many workers
are currently available to the job manager for the performance of job
tasks.

If the NumberOfIdleWorkers is equal to or greater than the
MinimumNumberOfWorkers of the job at the top of the queue, that job can
start running.

Characteristics Usage Job manager object

Read-only Always

Data type Double

Values The value of NumberOfIdleWorkers can range from 0 up to the total
number of workers registered with the job manager.

Examples Examine the number of workers available to a job manager.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

get(jm, 'NumberOfIdleWorkers')

See Also Properties

BusyWorkers, IdleWorkers, MaximumNumberOfWorkers,
MinimumNumberOfWorkers, NumberOfBusyWorkers

11-45

NumberOfOutputArguments

Purpose Number of arguments returned by task function

Description When you create a task with the createTask function, you define how
many output arguments are expected from the task function.

Characteristics Usage Task object

Read-only While task is running or finished

Data type Double

Values A matrix is considered one argument.

Examples Create a task and examine its NumberOfOutputArguments property.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
t = createTask(j, @rand, 1, {2, 4});
get(t,'NumberOfOutputArguments')
ans =

1

This example returns a 2-by-4 matrix, which is a single argument. The
NumberOfOutputArguments value is set by the createTask function, as
the argument immediately after the task function definition; in this
case, the 1 following the @rand argument.

See Also Functions

createTask

Properties

OutputArguments

11-46

OutputArguments

Purpose Data returned from execution of task

Description OutputArguments is a 1-by-N cell array in which each element
corresponds to each output argument requested from task evaluation.
If the task’s NumberOfOutputArguments property value is 0, or if the
evaluation of the task produced an error, the cell array is empty.

Characteristics Usage Task object

Read-only Always

Data type Cell array

Values The forms and values of the output arguments are totally dependent
on the task function.

Examples Create a job with a task and examine its result after running the job.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
t = createTask(j, @rand, 1, {2, 4});
submit(j)

When the job is finished, retrieve the results as a cell array.

result = get(t, 'OutputArguments')

Retrieve the results from all the tasks of a job.

alltasks = get(j, 'Tasks')
allresults = get(alltasks, 'OutputArguments')

Because each task returns a cell array, allresults is a cell array of
cell arrays.

11-47

OutputArguments

See Also Functions

createTask, getAllOutputArguments

Properties

Function, InputArguments, NumberOfOutputArguments

11-48

ParallelSubmissionWrapperScript

Purpose Script LSF scheduler runs to start labs

Description ParallelSubmissionWrapperScript identifies the script for the LSF
scheduler to run when starting labs for a parallel job.

Characteristics Usage LSF scheduler object

Read-only Never

Data type String

Values ParallelSubmissionWrapperScript is a string specifying the full path
to the script. This property value is set when you execute the function
setupForParallelExecution, so you do not need to set the value
directly. The property value then points to the appropriate wrapper
script in matlabroot/toolbox/distcomp/bin/util.

See Also Functions

createParallelJob, setupForParallelExecution, submit

Properties

ClusterName, ClusterMatlabRoot, MasterName, SubmitArguments

11-49

ParallelSubmitFcn

Purpose Specify function to run when parallel job submitted to generic scheduler

Description ParallelSubmitFcn identifies the function to run when you submit a
parallel job to the generic scheduler. The function runs in the MATLAB
client. This user-defined parallel submit function provides certain job
and task data for the MATLAB worker, and identifies a corresponding
decode function for the MATLAB worker to run.

For more information, see “MATLAB Client Submit Function” on page
4-25.

Characteristics Usage Generic scheduler object

Read-only Never

Data type String

Values ParallelSubmitFcn can be set to any valid MATLAB callback value
that uses the user-defined parallel submit function.

For more information about parallel submit functions and where to
find example templates you can use, see “Using the Generic Scheduler
Interface” on page 6-7.

See Also Functions

createParallelJob, submit

Properties

MatlabCommandToRun, SubmitFcn

11-50

Parent

Purpose Parent object of job or task

Description A job’s Parent property indicates the job manager or scheduler object
that contains the job. A task’s Parent property indicates the job object
that contains the task.

Characteristics Usage Job object or task object

Read-only Always

Data type Job manager, scheduler, or job object

See Also Properties

Jobs, Tasks

11-51

PathDependencies

Purpose Specify directories to add to MATLAB worker path

Description PathDependencies identifies directories to be added to the path of
MATLAB worker sessions for this job.

Characteristics Usage Scheduler job object

Read-only Never

Data type Cell array of strings

Values PathDependencies is empty by default. For a mixed-platform
environment, the strings can specify both UNIX and Windows paths;
those not appropriate or not found for a particular node generate
warnings and are ignored.

Examples Set the MATLAB worker path in a mixed-platform environment to use
functions in both the central repository (/central/funcs) and the
department archive (/dept1/funcs).

sch = findResource('scheduler','name','LSF')
job1 = createJob(sch)
p = {'/central/funcs','/dept1/funcs', ...

'\\OurDomain\central\funcs','\\OurDomain\dept1\funcs'}
set(job1, 'PathDependencies', p)

See Also Properties

ClusterMatlabRoot, FileDependencies

11-52

PreviousJob

Purpose Job whose task this worker previously ran

Description PreviousJob indicates the job whose task the worker most recently
evaluated.

Characteristics Usage Worker object

Read-only Always

Data type Job object

Values PreviousJob is an empty vector until the worker finishes evaluating
its first task.

See Also Properties

CurrentJob, CurrentTask, PreviousTask, Worker

11-53

PreviousTask

Purpose Task that this worker previously ran

Description PreviousTask indicates the task that the worker most recently
evaluated.

Characteristics Usage Worker object

Read-only Always

Data type Task object

Values PreviousTask is an empty vector until the worker finishes evaluating
its first task.

See Also Properties

CurrentJob, CurrentTask, PreviousJob, Worker

11-54

QueuedFcn

Purpose Specify M-file function to execute when job is submitted to job manager
queue

Description QueuedFcn specifies the M-file function to execute when a job is
submitted to a job manager queue.

The callback will be executed in the local MATLAB session, that is,
the session that sets the property.

Characteristics Usage Job object

Read-only Never

Data type Callback

Values QueuedFcn can be set to any valid MATLAB callback value.

Examples Create a job and set its QueuedFcn property, using a function handle to
an anonymous function that sends information to the display.

jm = findResource('scheduler','type','jobmanager', ...

'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm, 'Name', 'Job_52a');

set(j, 'QueuedFcn', ...

@(job,eventdata) disp([job.Name ' now queued for execution.']))

.

.

.

submit(j)

Job_52a now queued for execution.

See Also Functions

submit

Properties

FinishedFcn, RunningFcn

11-55

RestartWorker

Purpose Specify whether to restart MATLAB workers before evaluating job tasks

Description In some cases, you might want to restart MATLAB on the workers
before they evaluate any tasks in a job. This action resets defaults,
clears the workspace, frees available memory, and so on.

Characteristics Usage Job object

Read-only After job is submitted

Data type Logical

Values Set RestartWorker to true (or logical 1) if you want the job to restart
the MATLAB session on any workers before they evaluate their first
task for that job. The workers are not reset between tasks of the same
job. Set RestartWorker to false (or logical 0) if you do not want
MATLAB restarted on any workers. When you perform get on the
property, the value returned is logical 1 or logical 0. The default value is
0, which does not restart the workers.

Examples Create a job and set it so that MATLAB workers are restarted before
evaluating tasks in a job.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
set(j, 'RestartWorker', true)
.
.
.
submit(j)

See Also Functions

submit

11-56

RunningFcn

Purpose Specify M-file function to execute when job or task starts running

Description The callback will be executed in the local MATLAB session, that is,
the session that sets the property.

Characteristics Usage Task object or job object

Read-only Never

Data type Callback

Values RunningFcn can be set to any valid MATLAB callback value.

Examples Create a job and set its QueuedFcn property, using a function handle to
an anonymous function that sends information to the display.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm, 'Name', 'Job_52a');
set(j, 'RunningFcn', ...

@(job,eventdata) disp([job.Name ' now running.']))
.
.
.
submit(j)
Job_52a now running.

See Also Functions

submit

Properties

FinishedFcn, QueuedFcn

11-57

SchedulerHostname

Purpose Name of host running CCS scheduler

Description SchedulerHostname indicates the name of the node on which the CCS
scheduler is running.

Characteristics Usage CCS scheduler object

Read-only Never

Data type String

Values SchedulerHostname is a string of the full name of the scheduler node.

See Also Properties

ClusterOsType

11-58

StartTime

Purpose When job or task started

Description StartTime holds a date number specifying the time when a job or task
starts running, in the format 'day mon dd hh:mm:ss tz yyyy'.

Characteristics Usage Job object or task object

Read-only Always

Data type String

Values StartTime is assigned the job manager’s system time when the task
or job has started running.

Examples Create and submit a job, then get its StartTime and FinishTime.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
t1 = createTask(j, @rand, 1, {12,12});
t2 = createTask(j, @rand, 1, {12,12});
t3 = createTask(j, @rand, 1, {12,12});
t4 = createTask(j, @rand, 1, {12,12});
submit(j)
waitForState(j, 'finished')
get(j, 'StartTime')
ans =
Mon Jun 21 10:02:17 EDT 2004
get(j, 'FinishTime')
ans =
Mon Jun 21 10:02:52 EDT 2004

11-59

StartTime

See Also Functions

submit

Properties

CreateTime, FinishTime, SubmitTime

11-60

State

Purpose Current state of task, job, job manager, or worker

Description The State property reflects the stage of an object in its life cycle,
indicating primarily whether or not it has yet been executed. The
possible State values for all Distributed Computing Toolbox objects are
discussed below in the “Values” section.

Note The State property of the task object is different than the State
property of the job object. For example, a task that is finished may be
part of a job that is running if other tasks in the job have not finished.

Characteristics Usage Task, job, job manager, or worker object

Read-only Always

Data type String

Values Task Object

For a task object, possible values for State are

• pending — Tasks that have not yet started to evaluate the task
object’s Function property are in the pending state.

• running — Task objects that are currently in the process of
evaluating the Function property are in the running state.

• finished — Task objects that have finished evaluating the task
object’s Function property are in the finished state.

• unavailable — Communication cannot be established with the job
manager.

11-61

State

Job Object

For a job object, possible values for State are

• pending — Job objects that have not yet been submitted to a job
queue are in the pending state.

• queued — Job objects that have been submitted to a job queue but
have not yet started to run are in the queued state.

• running — Job objects that are currently in the process of running
are in the running state.

• finished — Job objects that have completed running all their tasks
are in the finished state.

• failed — Job objects when using a third-party scheduler and the job
could not run because of unexpected or missing information.

• unavailable — Communication cannot be established with the job
manager.

Job Manager

For a job manager, possible values for State are

• running — A started job queue will execute jobs normally.

• paused — The job queue is paused.

• unavailable — Communication cannot be established with the job
manager.

When a job manager first starts up, the default value for State is
running.

11-62

State

Worker

For a worker, possible values for State are

• running — A started job queue will execute jobs normally.

• unavailable — Communication cannot be established with the
worker.

Examples Create a job manager object representing a job manager service, and
create a job object; then examine each object’s State property.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

get(jm, 'State')
ans =

running
j = createJob(jm);
get(j, 'State')
ans =

pending

See Also Functions

createJob, createTask, findResource, pause, resume, submit

11-63

SubmitArguments

Purpose Specify additional arguments to use when submitting job to LSF or
mpiexec scheduler

Description SubmitArguments is simply a string that is passed via the bsub
command to the LSF scheduler at submit time, or passed to the mpiexec
command if using an mpiexec scheduler.

Characteristics Usage LSF or mpiexec scheduler object

Read-only Never

Data type String

Values LSF

Useful SubmitArguments values might be '-m "machine1 machine2"'
to indicate that your LSF scheduler should use only the named
machines to run the job, or '-R "type==LINUX64"' to use only Linux
64-bit machines. Note that by default the LSF scheduler will attempt
to run your job on only nodes with an architecture similar to the local
machine’s unless you specify '-R "type==any"'.

mpiexec

The following SubmitArguments values might be useful when using an
mpiexec scheduler. They can be combined to form a single string when
separated by spaces.

Value Description

-phrase MATLAB Use MATLAB as passphrase to connect with
smpd.

-noprompt Suppress prompting for any user
information.

-localonly Run only on the local computer.

11-64

SubmitArguments

Value Description

-host <hostname> Run only on the identified host.

-machinefile
<filename>

Run only on the nodes listed in the specified
file (one hostname per line).

For a complete list, see the command-line help for the mpiexec
command:

mpiexec -help
mpiexec -help2

See Also Functions

submit

Properties

MatlabCommandToRun, MpiexecFileName

11-65

SubmitFcn

Purpose Specify function to run when job submitted to generic scheduler

Description SubmitFcn identifies the function to run when you submit a job to
the generic scheduler. The function runs in the MATLAB client. This
user-defined submit function provides certain job and task data for
the MATLAB worker, and identifies a corresponding decode function
for the MATLAB worker to run.

For further information, see “MATLAB Client Submit Function” on
page 4-25.

Characteristics Usage Generic scheduler object

Read-only Never

Data type String

Values SubmitFcn can be set to any valid MATLAB callback value that uses
the user-defined submit function.

For a description of the user-defined submit function, how it is used, and
its relationship to the worker decode function, see “Using the Generic
Scheduler Interface” on page 4-24.

See Also Functions

submit

Properties

MatlabCommandToRun

11-66

SubmitTime

Purpose When job was submitted to queue

Description SubmitTime holds a date number specifying the time
when a job was submitted to the job queue, in the format
'day mon dd hh:mm:ss tz yyyy'.

Characteristics Usage Job object

Read-only Always

Data type String

Values SubmitTime is assigned the job manager’s system time when the job is
submitted.

Examples Create and submit a job, then get its SubmitTime.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
createTask(j, @rand, 1, {12,12});
submit(j)
get(j, 'SubmitTime')
ans =
Wed Jun 30 11:33:21 EDT 2004

See Also Functions

submit

Properties

CreateTime, FinishTime, StartTime

11-67

Tag

Purpose Specify label to associate with job object

Description You configure Tag to be a string value that uniquely identifies a job
object.

Tag is particularly useful in programs that would otherwise need to
define the job object as a global variable, or pass the object as an
argument between callback routines.

You can return the job object with the findJob function by specifying
the Tag property value.

Characteristics Usage Job object

Read-only Never

Data type String

Values The default value is an empty string.

Examples Suppose you create a job object in the job manager jm.

job1 = createJob(jm);

You can assign job1 a unique label using Tag.

set(job1,'Tag','MyFirstJob')

You can identify and access job1 using the findJob function and the
Tag property value.

job_one = findJob(jm,'Tag','MyFirstJob');

See Also Functions

findJob

11-68

Tasks

Purpose Tasks contained in job object

Description The Tasks property contains an array of all the task objects in a job,
whether the tasks are pending, running, or finished. Tasks are always
returned in the order in which they were created.

Characteristics Usage Job object

Read-only Always

Data type Array of task objects

Examples Examine the Tasks property for a job object, and use the resulting array
of objects to set property values.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
createTask(j, ...)
.
.
.
createTask(j, ...)
alltasks = get(j, 'Tasks')
alltasks =

distcomp.task: 10-by-1
set(alltasks, 'Timeout', 20);

The last line of code sets the Timeout property value to 20 seconds for
each task in the job.

11-69

Tasks

See Also Functions

createTask, destroy, findTask

Properties

Jobs

11-70

Timeout

Purpose Specify time limit to complete task or job

Description Timeout holds a double value specifying the number of seconds to wait
before giving up on a task or job.

The time for timeout begins counting when the task State property
value changes from the Pending to Running, or when the job object
State property value changes from Queued to Running.

When a task times out, the behavior of the task is the same as if the
task were stopped with the cancel function, except a different message
is placed in the task object’s ErrorMessage property.

When a job times out, the behavior of the job is the same as if the job
were stopped using the cancel function, except all pending and running
tasks are treated as having timed out.

Characteristics Usage Task object or job object

Read-only While running

Data type Double

Values The default value for Timeout is large enough so that in practice, tasks
and jobs will never time out. You should set the value of Timeout to the
number of seconds you want to allow for completion of tasks and jobs.

Examples Set a job’s Timeout value to 1 minute.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
set(j, 'Timeout', 60)

11-71

Timeout

See Also Functions

submit

Properties

ErrorMessage, State

11-72

Type

Purpose Type of object

Description Type indicates the type of object.

Characteristics Usage Scheduler object, scheduler job object, or scheduler
task object

Read-only Always

Data type String

Values Type is a string set to 'task', 'job', or the name of the generic
scheduler.

11-73

UserData

Purpose Specify data to associate with job or task object

Description You configure UserData to store data that you want to associate with an
object. The object does not use this data directly, but you can access it
using the get function or dot notation.

UserData is stored in the local MATLAB client session, not in the job
manager. So, one MATLAB client session cannot access the data stored
in this property by another MATLAB client session. Even on the same
machine, if you close the client session where UserData is set for an
object, and then access the same object from a later client session via
the job manager, the original UserData is not recovered. Likewise,
commands such as

clear all
clear functions

will clear an object in the local session, permanently removing the data
in the UserData property.

Characteristics Usage Job object or task object

Read-only Never

Data type Any type

Values The default value is an empty vector.

Examples Suppose you create the job object job1.

job1 = createJob(jm);

You can associate data with job1 by storing it in UserData.

coeff.a = 1.0;
coeff.b = -1.25;
job1.UserData = coeff

11-74

UserData

get(job1,'UserData')
ans =

a: 1
b: -1.2500

11-75

UserName

Purpose User who created job

Description The UserName property value is a string indicating the login name of
the user who created the job.

Characteristics Usage Job object

Read-only Always

Data type String

Examples Examine a job to see who created it.

get(job1, 'UserName')
ans =
jsmith

11-76

Worker

Purpose Worker session that performed task

Description The Worker property value is an object representing the worker session
that evaluated the task.

Characteristics Usage Task object

Read-only Always

Data type Worker object

Values Before a task is evaluated, its Worker property value is an empty vector.

Examples Find out which worker evaluated a particular task.

submit(job1)
waitForState(job1,'finished')
t1 = findTask(job1,'ID',1)
t1.Worker.Name
ans =
node55_worker1

See Also Properties

Tasks

11-77

WorkerMachineOsType

Purpose Specify operating system of nodes on which mpiexec scheduler will start
labs

Description WorkerMachineOsType specifies the operating system of the nodes that
an mpiexec scheduler will start labs on for the running of a parallel job.

Characteristics Usage mpiexec scheduler object

Read-only Never

Data type String

Values The only value the property can have is 'pc' or 'unix'. The nodes of
the labs running an mpiexec job must all be the same platform. The
only heterogeneous mixing allowed in the cluster for the same mpiexec
job is Macintosh with Solaris 2.

See Also Properties

HostAddress, HostName

11-78

Glossary

Glossary

CHECKPOINTBASE
The name of the parameter in the mdce_def file that defines the location
of the job manager and worker checkpoint directories.

checkpoint directory
Location where job manager checkpoint information and worker
checkpoint information is stored.

client
The MATLAB session that defines and submits the job. This is the
MATLAB session in which the programmer usually develops and
prototypes applications. Also known as the MATLAB client.

client computer
The computer running the MATLAB client.

cluster
A collection of computers that are connected via a network and intended
for a common purpose.

coarse-grained application
An application for which run time is significantly greater than
the communication time needed to start and stop the program.
Coarse-grained distributed applications are also called embarrassingly
parallel applications.

computer
A system with one or more processors.

distributed application
The same application that runs independently on several nodes,
possibly with different input parameters. There is no communication,
shared data, or synchronization points between the nodes. Distributed
applications can be either coarse-grained or fine-grained.

distributed computing
Computing with distributed applications, running the application on
several nodes simultaneously.

Glossary-1

Glossary

distributed computing demos
Demonstration programs that use the Distributed Computing Toolbox,
as opposed to sequential demos.

DNS
Domain Name System. A system that translates Internet domain
names into IP addresses.

fine-grained application
An application for which run time is significantly less than the
communication time needed to start and stop the program. Compare to
coarse-grained applications.

head node
Usually, the node of the cluster designated for running the job manager
and license manager. It is often useful to run all the nonworker related
processes on a single machine.

heterogeneous cluster
A cluster that is not homogeneous.

homogeneous cluster
A cluster of identical machines, in terms of both hardware and software.

job
The complete large-scale operation to perform in MATLAB, composed
of a set of tasks.

job manager
The MathWorks process that queues jobs and assigns tasks to workers.
A third-party process that performs this function is called a scheduler.
The general term "scheduler" can also refer to a job manager.

job manager checkpoint information
Snapshot of information necessary for the job manager to recover from
a system crash or reboot.

job manager database
The database that the job manager uses to store the information about
its jobs and tasks.

Glossary-2

Glossary

job manager lookup process
The process that allows clients, workers, and job managers to find each
other. It starts automatically when the job manager starts.

lab
When workers start, they work independently by default. They can
then connect to each other and work together as peers, and are then
referred to as labs.

LOGDIR
The name of the parameter in the mdce_def file that defines the
directory where logs are stored.

MATLAB client
See client.

MathWorks job manager
See job manager.

MATLAB worker
See worker.

mdce
The service that has to run on all machines before they can run a job
manager or worker. This is the engine foundation process, making sure
that the job manager and worker processes that it controls are always
running.

Note that the program and service name is all lower-case letters.

mdce_def file
The file that defines all the defaults for the mdce processes by allowing
you to set preferences or definitions in the form of parameter values.

MPI
Message Passing Interface, the means by which labs communicate with
each other while running tasks in the same job.

node
A computer that is part of a cluster.

Glossary-3

Glossary

parallel application
The same application that runs on several labs simultaneously, with
communication, shared data, or synchronization points between the
labs.

random port
A random unprivileged TCP port, i.e., a random TCP port above 1024.

register a worker
The action that happens when both worker and job manager are started
and the worker contacts job manager.

scheduler
The process, either third-party or the MathWorks job manager, that
queues jobs and assigns tasks to workers.

task
One segment of a job to be evaluated by a worker.

worker
The MATLAB process that performs the task computations. Also known
as the MATLAB worker or worker process.

worker checkpoint information
Files required by the worker during the execution of tasks.

Glossary-4

Index

IndexA
arrays

distributed 7-4
local 7-10
private 7-4
replicated 7-2
types of 7-2
variant 7-3

B
BusyWorkers property 11-2

C
cancel function 9-2
CaptureCommandWindowOutput property 11-3
CCS scheduler 4-13
cell function 9-4
clear function 9-5
ClusterMatlabRoot property 11-5
ClusterName property 11-6
ClusterOsType property 11-7
CommandWindowOutput property 11-8
Configuration property 11-10
configurations 2-5
createJob function 9-6
createParallelJob function 9-8
createTask function 9-11
CreateTime property 11-12
current working directory

MATLAB worker 2-9
CurrentJob property 11-13
CurrentTask property 11-14

D
darray function 9-13
DataLocation property 11-15
dcolon function 9-15

dcolonpartition function 9-16
dctconfig function 9-17
demote function 9-19
destroy function 9-20
dfeval function 9-21
dfevalasync function 9-25
distribdim function 9-27
distribute function 9-28
distributed arrays

constructor functions 7-10
creating 7-7
defined 7-4
indexing 7-15
working with 7-5

distributor function 9-29

E
EnvironmentSetMethod property 11-17
ErrorIdentifier property 11-18
ErrorMessage property 11-19
eye function 9-31

F
false function 9-33
FileDependencies property 11-20
files

sharing 4-6
using an LSF scheduler 4-19

findJob function 9-35
findResource function 9-37
findTask function 9-41
FinishedFcn property 11-22
FinishTime property 11-24
Function property 11-26
functions

cancel 9-2
cell 9-4
clear 9-5

Index-1

Index

createJob 9-6
createParallelJob 9-8
createTask 9-11
darray 9-13
dcolon 9-15
dcolonpartition 9-16
dctconfig 9-17
demote 9-19
destroy 9-20
dfeval 9-21
dfevalasync 9-25
distribdim 9-27
distribute 9-28
distributor 9-29
eye 9-31
false 9-33
findJob 9-35
findResource 9-37
findTask 9-41
gather 9-43
gcat 9-45
get 9-46
getAllOutputArguments 9-48
getCurrentJob 9-50
getCurrentJobmanager 9-51
getCurrentTask 9-52
getCurrentWorker 9-53
getDebugLog 9-54
getFileDependencyDir 9-56
gop 9-57
gplus 9-59
help 9-60
Inf 9-61
inspect 9-63
isdistributed 9-65
isreplicated 9-66
jobStartup 9-67
labBarrier 9-68
labBroadcast 9-69
labindex 9-71

labProbe 9-72
labReceive 9-73
labSend 9-74
labSendReceive 9-75
length 9-78
local 9-79
localspan 9-80
methods 9-81
mpiLibConf 9-83
mpiSettings 9-84
NaN 9-86
numlabs 9-88
ones 9-89
parfor 9-91
partition 9-93
pause 9-94
pload 9-95 9-102
pmode 9-97
promote 9-101
rand 9-104
randn 9-106
redistribute 9-108
resume 9-110
set 9-111
setupForParallelExecution 9-114
size 9-116
sparse 9-117
speye 9-119
sprand 9-121
sprandn 9-123
submit 9-125
taskFinish 9-126
taskStartup 9-127
true 9-128
waitForState 9-130
zeros 9-132

G
gather function 9-43

Index-2

Index

gcat function 9-45
generic scheduler

distributed jobs 4-24
parallel jobs 6-7

get function 9-46
getAllOutputArguments function 9-48
getCurrentJob function 9-50
getCurrentJobmanager function 9-51
getCurrentTask function 9-52
getCurrentWorker function 9-53
getDebugLogp function 9-54
getFileDependencyDir function 9-56
gop function 9-57
gplus function 9-59

H
HasSharedFilesystem property 11-27
help

command-line 1-12
help function 9-60
HostAddress property 11-28
HostName property 11-29

I
ID property 11-30
IdleWorkers property 11-32
Inf function 9-61
InputArguments property 11-33
inspect function 9-63
isdistributed function 9-65
isreplicated function 9-66

J
job

creating
example 4-3

creating on generic scheduler
example 4-34

creating on LSF or CCS scheduler
example 4-16

life cycle 2-3
submitting to generic scheduler queue 4-36
submitting to LSF or CCS scheduler

queue 4-18
submitting to queue 4-5

job manager
finding

example 4-2
JobData property 11-34
Jobs property 11-35
jobStartup function 9-67

L
labBarrier function 9-68
labBroadcast function 9-69
labindex function 9-71
labProbe function 9-72
labReceive function 9-73
labSend function 9-74
labSendReceive function 9-75
length function 9-78
local function 9-79
localspan function 9-80
LSF scheduler 4-13

M
MasterName property 11-37 11-58
MatlabCommandToRun property 11-38
MaximumNumberOfWorkers property 11-39
methods function 9-81
MinimumNumberOfWorkers property 11-40
MpiexecFileName property 11-41
mpiLibConf function 9-83
mpiSettings function 9-84

Index-3

Index

N
Name property 11-42
NaN function 9-86
NumberOfBusyWorkers property 11-44
NumberOfIdleWorkers property 11-45
NumberOfOutputArguments property 11-46
numlabs function 9-88

O
objects 1-7
ones function 9-89
OutputArguments property 11-47

P
parallel jobs 6-2

CCS 6-4
job manager 6-4
LSF 6-4
mpiexec 6-4
supported scheduler 6-4

ParallelSubmissionWrapperScript
property 11-49

ParallelSubmitFcn property 11-50
Parent property 11-51
parfor function 9-91
partition function 9-93
PathDependencies property 11-52
pause function 9-94
platforms

supported 1-7
pload function 9-95 9-102
pmode function 9-97
PreviousJob property 11-53
PreviousTask property 11-54
programming

basic session 4-2
guidelines 2-2
tips 2-9

promote function 9-101
properties

BusyWorkers 11-2
CaptureCommandWindowOutput 11-3
ClusterMatlabRoot 11-5
ClusterName 11-6
ClusterOsType 11-7
CommandWindowOutput 11-8
Configuration 11-10
CreateTime 11-12
CurrentJob 11-13
CurrentTask 11-14
DataLocation 11-15
EnvironmentSetMethod 11-17
ErrorIdentifier 11-18
ErrorMessage 11-19
FileDependencies 11-20
FinishedFcn 11-22
FinishTime 11-24
Function 11-26
HasSharedFilesystem 11-27
HostAddress 11-28
HostName 11-29
ID 11-30
IdleWorkers 11-32
InputArguments 11-33
JobData 11-34
Jobs 11-35
MasterName 11-37 11-58
MatlabCommandToRun 11-38
MaximumNumberOfWorkers 11-39
MinimumNumberOfWorkers 11-40
MpiexecFileName 11-41
Name 11-42
NumberOfBusyWorkers 11-44
NumberOfIdleWorkers 11-45
NumberOfOutputArguments 11-46
OutputArguments 11-47
ParallelSubmissionWrapperScript 11-49
ParallelSubmitFcn 11-50

Index-4

Index

Parent 11-51
PathDependencies 11-52
PreviousJob 11-53
PreviousTask 11-54
QueuedFcn 11-55
RestartWorker 11-56
RunningFcn 11-57
StartTime 11-59
State 11-61
SubmitArguments 11-64
SubmitFcn 11-66
SubmitTime 11-67
Tag 11-68
Tasks 11-69
Timeout 11-71
Type 11-73
UserData 11-74
UserName 11-76
Worker 11-77
WorkerMachineOsType 11-78

Q
QueuedFcn property 11-55

R
rand function 9-104
randn function 9-106
redistribute function 9-108
RestartWorker property 11-56
results

retrieving 4-6
retrieving from job on generic

scheduler 4-37
retrieving from job on LSF scheduler 4-18

resume function 9-110
RunningFcn property 11-57

S
scheduler

CCS 4-13
finding, example 4-15

generic interface
distributed jobs 4-24
parallel jobs 6-7

LSF 4-13
finding, example 4-13

set function 9-111
setupForParallelExecution function 9-114
size function 9-116
sparse function 9-117
speye function 9-119
sprand function 9-121
sprandn function 9-123
StartTime property 11-59
State property 11-61
submit function 9-125
SubmitArguments property 11-64
SubmitFcn property 11-66
SubmitTime property 11-67

T
Tag property 11-68
task

creating
example 4-5

creating on generic scheduler
example 4-36

creating on LSF scheduler
example 4-17

taskFinish function 9-126
Tasks property 11-69
taskStartup function 9-127
Timeout property 11-71
troubleshooting

programs 2-12
true function 9-128

Index-5

Index

Type property 11-73

U
user configurations 2-5
UserData property 11-74
UserName property 11-76

W
waitForState function 9-130
Worker property 11-77
WorkerMachineOsType property 11-78

Z
zeros function 9-132

Index-6

	toc
	Getting Started
	What Are the Distributed Computing Products?
	Determining Product Installation and Versions

	Toolbox and Engine Components
	Job Managers, Workers, and Clients
	Third-Party Schedulers
	Choosing Between a Scheduler and Job Manager

	Components on Mixed Platforms or Heterogeneous Clusters
	MATLAB Distributed Computing Engine Service
	Components Represented in the Client

	Using the Distributed Computing Toolbox
	Overview
	Example: Programming a Basic Job with a Job Manager
	Example: Evaluating a Basic Function
	Example: Programming a Basic Job with an LSF Scheduler

	Getting Help
	Command-Line Help
	Listing Available Functions

	Help Browser

	Programming Overview
	Program Development Guidelines
	Life Cycle of a Job
	Programming with User Configurations
	Defining Configurations
	Example — Setting Properties in the User Configuration File

	Applying Configurations in Client Code
	Finding Schedulers
	Setting Job and Task Properties
	Writing Scheduler-Independent Jobs

	Programming Tips and Notes
	Saving or Sending Objects
	Current Working Directory of a MATLAB Worker
	Using clear functions
	Running Tasks That Call Simulink
	Using the pause Function
	Transmitting Large Amounts of Data
	Interrupting a Job
	IPv6 on Macintosh
	Speeding Up a Job

	Troubleshooting and Debugging
	Object Data Size Limitations
	MATLAB Clients and Workers
	Job Managers

	File Access and Permissions
	Ensuring That Windows Workers Can Access Files
	Task Function Is Unavailable
	Load and Save Errors
	Tasks or Jobs Remain in Queued State

	No Results or Failed Job
	Task Errors
	Debug Logs

	Connection Problems Between the Client and Job Manager
	Client Cannot See the Job Manager
	Job Manager Cannot See the Client

	Evaluating Functions in a Cluster
	Evaluating Functions Synchronously
	Scope of dfeval
	Arguments of dfeval
	Example — Using dfeval

	Evaluating Functions Asynchronously

	Programming Distributed Jobs
	Using a Job Manager
	Creating and Running Jobs with a Job Manager
	Find a Job Manager
	Create a Job
	Create Tasks
	Submit a Job to the Job Queue
	Retrieve the Job's Results

	Sharing Code
	Directly Accessing Files
	Passing Data Between Sessions
	Passing M-Code for Startup and Finish

	Managing Objects in the Job Manager
	What Happens When the Client Session Ends
	Recovering Objects
	Resetting Callback Properties
	Permanently Removing Objects

	Using a Fully Supported Third-Party Scheduler
	Creating and Running Jobs with Your Scheduler
	Find an LSF Scheduler
	Find a CCS Scheduler
	Create a Job
	Create Tasks
	Submit a Job to the Job Queue
	Retrieve the Job's Results

	Sharing Code
	Directly Accessing Files
	Passing Data Between Sessions
	Passing M-Code for Startup and Finish

	Managing Objects
	What Happens When the Client Session Ends?
	Recovering Objects
	Destroying Jobs

	Using the Generic Scheduler Interface
	Overview
	MATLAB Client Submit Function
	Identifying the Decode Function
	Passing Job and Task Data
	Defining Scheduler Command to Run MATLAB

	Example — Writing the Submit Function
	MATLAB Worker Decode Function
	Identifying File Name and Location
	Reading the Job and Task Information

	Example — Writing the Decode Function
	Example — Programming and Running a Job in the Client
	1. Create a Scheduler Object
	2. Create a Job
	3. Create Tasks
	4. Submit a Job to the Job Queue
	5. Retrieve the Job's Results

	Supplied Submit and Decode Functions
	Summary

	Interactive Parallel Mode
	Introduction
	Getting Started with Interactive Parallel Mode
	Plotting in pmode
	Limitations and Unexpected Results
	Evaluating Selection of Code
	Distributing Nonreplicated Arrays
	Using Graphics in pmode
	Displaying a GUI
	Using Simulink

	Troubleshooting
	Hostname Resolution
	Socket Connections

	Programming Parallel Jobs
	Introduction
	Using a Supported Scheduler
	Coding the Task Function
	Coding in the Client

	Using the Generic Scheduler Interface
	Introduction
	Coding in the Client
	Configuring the Scheduler Object
	Supplied Submit and Decode Functions

	Further Notes on Parallel Jobs
	Number of Tasks in a Parallel Job
	Avoiding Deadlock and Other Dependency Errors

	Parallel Math
	Array Types
	Nondistributed Arrays
	Replicated Arrays
	Variant Arrays
	Private Arrays

	Distributed Arrays

	Working with Distributed Arrays
	How MATLAB Distributes Arrays
	How MATLAB Displays a Distributed Array
	How Much Is Distributed to Each Lab
	Distribution of Other Data Types

	Creating a Distributed Array
	Partitioning a Larger Array
	Building from Smaller Arrays
	Using MATLAB Constructor Functions

	Local Arrays
	Creating Local Arrays from a Distributed Array
	Creating a Distributed from Local Arrays

	Obtaining Information About the Array
	Determining Whether an Array Is Distributed
	Determining the Dimension of Distribution
	Other Array Functions

	Changing the Dimension of Distribution
	Restoring the Full Array
	Indexing into a Distributed Array
	Indexing Functions

	Using a Parallel for-Loop (parfor)
	Distributed Arrays in a parfor Loop

	Using MATLAB Functions on Distributed Arrays

	Functions — By Category
	General Toolbox Functions
	Job Manager Functions
	Scheduler Functions
	Job Functions
	Task Functions
	Toolbox Functions Used in Parallel Jobs and pmode
	Toolbox Functions Used in MATLAB Workers

	Functions — Alphab etical List
	Examples

	Properties — By Category
	Job Manager Properties
	Scheduler Properties
	Job Properties
	Task Properties
	Worker Properties

	Properties — Alphabetical List
	Glossary
	Index

